Source code for mindspore.parallel.nn.loss

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
Parallel Loss for the Parallel Training
This is an experimental interface that is subject to change and/or deletion.
"""
from mindspore.common.tensor import Tensor
import mindspore.common.dtype as mstype
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.nn import Cell
from mindspore.nn.loss.loss import _check_is_tensor
from mindspore.parallel.nn.layers import _check_input_dtype, _check_input_shape
from .op_parallel_config import default_dpmp_config, OpParallelConfig

__all__ = ["CrossEntropyLoss"]


[docs]class CrossEntropyLoss(Cell): """ Calculate the cross entropy loss. Args: parallel_config (OpParallelConfig): The parallel configure. Default `default_dpmp_config`, an instance of `OpParallelConfig` with default args. Inputs: - **logits** (Tensor) - Tensor of shape (N, C). Data type must be float16 or float32. the output logits of the backbone. - **labels** (Tensor) - Tensor of shape (N, ). The ground truth label of the sample. - **input_mask** (Tensor) - Tensor of shape (N, ). input_mask indicates whether there is padded inputs and for padded inputs it will not be counted into loss. Outputs: Tensor. the corresponding cross entropy loss Examples: >>> import numpy as np >>> from mindspore import dtype as mstype >>> from mindspore.parallel.nn import CrossEntropyLoss >>> from mindspore import Tensor >>> loss = CrossEntropyLoss() >>> logits = Tensor(np.array([[3, 5, 6, 9, 12, 33, 42, 12, 32, 72]]), mstype.float32) >>> labels_np = np.array([1]).astype(np.int32) >>> input_mask = Tensor(np.ones(1).astype(np.float32)) >>> labels = Tensor(labels_np) >>> output = loss(logits, labels, input_mask) >>> print(output.shape) (1,) """ def __init__(self, parallel_config=default_dpmp_config): super(CrossEntropyLoss, self).__init__() if not isinstance(parallel_config, OpParallelConfig): raise TypeError("Input args parallel_config must be the type OpParallelConfig.") dp = parallel_config.data_parallel mp = parallel_config.model_parallel self.sum = P.ReduceSum().shard(((dp, mp),)) self.onehot = P.OneHot().shard(((dp, mp), (), ())) # on/off value for onehot, for smooth labeling, modify the off_value self.on_value = Tensor(1.0, mstype.float32) self.off_value = Tensor(0.0, mstype.float32) self.max = P.ArgMaxWithValue(axis=-1, keep_dims=True).shard( ((dp, mp),)) self.eps_const = Tensor(1e-24, mstype.float32) self.sub = P.Sub().shard(((dp, mp), (dp, 1))) self.exp = P.Exp().shard(((dp, mp),)) self.div = P.RealDiv().shard(((dp, mp), (dp, 1))) self.log = P.Log().shard(((dp, mp),)) self.add = P.Add().shard(((dp, mp), ())) self.mul = P.Mul().shard( ((dp, mp), (dp, mp))) self.neg = P.Neg().shard(((dp, mp),)) self.sum2 = P.ReduceSum().shard(((1,),)) self.mul2 = P.Mul().shard(((1,), (1,))) self.add2 = P.Add() self.div2 = P.RealDiv() def construct(self, logits, label, input_mask): self._check_input(logits, label, input_mask) # the shape is [bs*seq_length, vocab_size] logits = F.cast(logits, mstype.float32) # LogSoftmax for logits over last dimension _, logit_max = self.max(logits) logit_sub = self.sub(logits, logit_max) logit_exp = self.exp(logit_sub) exp_sum = self.sum(logit_exp, -1) exp_sum = P.Reshape()(exp_sum, (F.shape(exp_sum)[0], 1)) softmax_result = self.div(logit_exp, exp_sum) log_softmax_result = self.log(self.add(softmax_result, self.eps_const)) # Flatten label to [bs*seq_length] label = P.Reshape()(label, (-1,)) # Get onehot label [bs*seq_length, vocab_size] one_hot_label = self.onehot(label, F.shape(logits)[-1], self.on_value, self.off_value) # Cross-Entropy loss loss = self.mul(log_softmax_result, one_hot_label) loss_unsum = self.neg(loss) loss_reduce = self.sum(loss_unsum, -1) # input_mask indicates whether there is padded inputs and for padded inputs it will not be counted into loss input_mask = P.Reshape()(input_mask, (-1,)) numerator = self.sum2(self.mul2(loss_reduce, input_mask)) denominator = self.add2( self.sum2(input_mask), P.Cast()(F.tuple_to_array((1e-5,)), mstype.float32)) loss = self.div2(numerator, denominator) return loss def _check_input(self, logits, label, input_mask): r"""Check the input tensor shape and type""" _check_is_tensor('logits', logits, self.cls_name) _check_is_tensor('label', label, self.cls_name) _check_is_tensor('input_mask', input_mask, self.cls_name) _check_input_dtype(F.dtype(logits), "logits", [mstype.float32, mstype.float16], self.cls_name) _check_input_dtype(F.dtype(label), "label", [mstype.int32], self.cls_name) _check_input_dtype(F.dtype(input_mask), "input_mask", [mstype.float32], self.cls_name) _check_input_shape(F.shape(logits), "logits", self.cls_name, 2) _check_input_shape(F.shape(label), "label", self.cls_name, 1) _check_input_shape(F.shape(input_mask), "input_mask", self.cls_name, 1) return True