mindspore.ops.clip_by_value

mindspore.ops.clip_by_value(x, clip_value_min, clip_value_max)[source]

Clips tensor values to a specified min and max.

Limits the value of \(x\) to a range, whose lower limit is ‘clip_value_min’ and upper limit is ‘clip_value_max’.

\[\begin{split}out_i= \left\{ \begin{array}{align} clip\_value_{max} & \text{ if } x_i\ge clip\_value_{max} \\ x_i & \text{ if } clip\_value_{min} \lt x_i \lt clip\_value_{max} \\ clip\_value_{min} & \text{ if } x_i \le clip\_value_{min} \\ \end{array}\right.\end{split}\]

Note

‘clip_value_min’ needs to be less than or equal to ‘clip_value_max’.

Parameters
  • x (Tensor) – Input data.

  • clip_value_min (Tensor) – The minimum value.

  • clip_value_max (Tensor) – The maximum value.

Returns

Tensor, a clipped Tensor.

Supported Platforms:

Ascend GPU

Examples

>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore.ops import composite as C
>>> import mindspore.common.dtype as mstype
>>> min_value = Tensor(5, mstype.float32)
>>> max_value = Tensor(20, mstype.float32)
>>> x = Tensor(np.array([[1., 25., 5., 7.], [4., 11., 6., 21.]]), mstype.float32)
>>> output = C.clip_by_value(x, min_value, max_value)
>>> print(output)
[[ 5. 20.  5.  7.]
 [ 5. 11.  6. 20.]]