mindspore.ops.UnsortedSegmentMax
- class mindspore.ops.UnsortedSegmentMax(*args, **kwargs)[source]
Computes the maximum along segments of a tensor.
Note
If the segment_id i is absent in the segment_ids, then output[i] will be filled with the minimum value of the input_x’s type.
- Inputs:
input_x (Tensor) - The shape is \((x_1, x_2, ..., x_R)\). The data type must be float16, float32 or int32.
segment_ids (Tensor) - A 1-D tensor whose shape is \((x_1)\), the value must be >= 0. The data type must be int32.
num_segments (int) - The value specifies the number of distinct segment_ids.
- Outputs:
Tensor, set the number of num_segments as N, the shape is \((N, x_2, ..., x_R)\).
- Raises
TypeError – If num_segments is not an int.
ValueError – If length of shape of segment_ids is not equal to 1.
- Supported Platforms:
Ascend
GPU
Examples
>>> input_x = Tensor(np.array([[1, 2, 3], [4, 5, 6], [4, 2, 1]]).astype(np.float32)) >>> segment_ids = Tensor(np.array([0, 1, 1]).astype(np.int32)) >>> num_segments = 2 >>> unsorted_segment_max = ops.UnsortedSegmentMax() >>> output = unsorted_segment_max(input_x, segment_ids, num_segments) >>> print(output) [[1. 2. 3.] [4. 5. 6.]]