mindspore.nn.EmbeddingThor
- class mindspore.nn.EmbeddingThor(vocab_size, embedding_size, use_one_hot=False, embedding_table='normal', dtype=mstype.float32, padding_idx=None)[source]
A simple lookup table that stores embeddings of a fixed dictionary and size and saving the information needed for THOR.
This module is often used to store word embeddings and retrieve them using indices. The input to the module is a list of indices, and the output is the corresponding word embeddings. And saves the information A and G in the dense connected layer needed for THOR, the detail can be seen in paper: https://www.aaai.org/AAAI21Papers/AAAI-6611.ChenM.pdf
Note
When ‘use_one_hot’ is set to True, the type of the input x must be mindspore.int32.
- Parameters
vocab_size (int) – The size of the dictionary of embeddings.
embedding_size (int) – The size of each embedding vector.
use_one_hot (bool) – Specifies whether to apply one_hot encoding form. Default: False.
embedding_table (Union[Tensor, str, Initializer, numbers.Number]) – Initializes the embedding_table. Refer to class initializer for the values of string when a string is specified. Default: ‘normal’.
dtype (
mindspore.dtype
) – Data type of input x. Default: mindspore.float32.padding_idx (int, None) – When the padding_idx encounters index, the output embedding vector of this index will be initialized to zero. Default: None. The feature is inactivated.
- Inputs:
x (Tensor) - Tensor of input shape \((\text{batch_size}, \text{x_length})\). The elements of the Tensor must be integer and not larger than vocab_size. Otherwise the corresponding embedding vector will be zero.
- Outputs:
Tensor of output shape \((\text{batch_size}, \text{x_length}, \text{embedding_size})\).
- Supported Platforms:
Ascend
GPU
Examples
>>> net = nn.EmbeddingThor(20000, 768, True) >>> x = Tensor(np.ones([8, 128]), mindspore.int32) >>> >>> # Maps the input word IDs to word embedding. >>> output = net(x) >>> output.shape (8, 128, 768)