文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.DenseQuant

class mindspore.nn.DenseQuant(in_channels, out_channels, weight_init='normal', bias_init='zeros', has_bias=True, activation=None, quant_config=quant_config_default, quant_dtype=QuantDtype.INT8)[source]

The fully connected layer with fake quantized operation.

This part is a more detailed overview of Dense operation. For more detials about Quantilization, please refer to the implementation of subclass of class:_Observer, for example, class:mindspore.nn.FakeQuantWithMinMaxObserver.

Parameters
  • in_channels (int) – The dimension of the input space.

  • out_channels (int) – The dimension of the output space.

  • weight_init (Union[Tensor, str, Initializer, numbers.Number]) – The trainable weight_init parameter. The dtype is same as x. The values of str refer to the function initializer. Default: ‘normal’.

  • bias_init (Union[Tensor, str, Initializer, numbers.Number]) – The trainable bias_init parameter. The dtype is same as x. The values of str refer to the function initializer. Default: ‘zeros’.

  • has_bias (bool) – Specifies whether the layer uses a bias vector. Default: True.

  • activation (Union[str, Cell, Primitive]) – The regularization function applied to the output of the layer, eg. ‘relu’. Default: None.

  • quant_config (QuantConfig) – Configures the types of quant observer and quant settings of weight and activation. Note that, QuantConfig is a special namedtuple, which is designed for quantization and can be generated by mindspore.compression.quant.create_quant_config() method. Default: QuantConfig with both items set to default FakeQuantWithMinMaxObserver.

  • quant_dtype (QuantDtype) – Specifies the FakeQuant datatype. Default: QuantDtype.INT8.

Inputs:
  • x (Tensor) - Tensor of shape (N,Cin,Hin,Win). The input dimension is preferably 2D or 4D.

Outputs:

Tensor of shape (N,Cout,Hout,Wout).

Raises
  • TypeError – If in_channels, out_channels is not an int.

  • TypeError – If has_bias is not a bool.

  • TypeError – If activation is not str, Cell and Primitive.

  • ValueError – If in_channels or out_channels is less than 1.

  • ValueError – If the dims of weight_init is not equal to 2 or the first element of weight_init is not equal to out_channels or the second element of weight_init is not equal to in_channels.

  • ValueError – If the dims of bias_init is not equal to 1 or the element of bias_init is not equal to out_channels.

Supported Platforms:

Ascend GPU

Examples

>>> import mindspore
>>> from mindspore.compression import quant
>>> from mindspore import Tensor
>>> qconfig = quant.create_quant_config()
>>> dense_quant = nn.DenseQuant(2, 1, weight_init='ones', quant_config=qconfig)
>>> x = Tensor(np.array([[1, 5], [3, 4]]), mindspore.float32)
>>> result = dense_quant(x)
>>> print(result)
[[5.929413]
 [6.9176483]]
construct(x)[source]

Use operators to construct the Dense layer.

extend_repr()[source]

A pretty print for Dense layer.