mindspore.dataset.vision.py_transforms.RandomCrop

class mindspore.dataset.vision.py_transforms.RandomCrop(size, padding=None, pad_if_needed=False, fill_value=0, padding_mode=Border.CONSTANT)[source]

Crop the input PIL Image at a random location with the specified size.

Parameters
  • size (Union[int, sequence]) – The output size of the cropped image. If size is an integer, a square crop of size (size, size) is returned. If size is a sequence of length 2, it should be (height, width).

  • padding (Union[int, sequence], optional) – The number of pixels to pad the image (default=None). If padding is not None, first pad image with padding values. If a single number is provided, pad all borders with this value. If a tuple or list of 2 values are provided, pad the (left and top) with the first value and (right and bottom) with the second value. If 4 values are provided as a list or tuple, pad the left, top, right and bottom respectively.

  • pad_if_needed (bool, optional) – Pad the image if either side is smaller than the given output size (default=False).

  • fill_value (int or tuple, optional) – filling value (default=0). The pixel intensity of the borders if the padding_mode is Border.CONSTANT. If it is a 3-tuple, it is used to fill R, G, B channels respectively.

  • padding_mode (str, optional) –

    The method of padding (default=Border.CONSTANT). It can be any of [Border.CONSTANT, Border.EDGE, Border.REFLECT, Border.SYMMETRIC].

    • Border.CONSTANT, means it fills the border with constant values.

    • Border.EDGE, means it pads with the last value on the edge.

    • Border.REFLECT, means it reflects the values on the edge omitting the last value of edge.

    • Border.SYMMETRIC, means it reflects the values on the edge repeating the last value of edge.

Examples

>>> from mindspore.dataset.transforms.py_transforms import Compose
>>> transforms_list = Compose([py_vision.Decode(),
...                            py_vision.RandomCrop(224),
...                            py_vision.ToTensor()])
>>> # apply the transform to dataset through map function
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list,
...                                                 input_columns="image")