# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Checkpoint related classes and functions."""
import os
import stat
import time
import threading
import mindspore.context as context
from mindspore import log as logger
from mindspore import nn
from mindspore._checkparam import Validator
from mindspore.train._utils import _make_directory
from mindspore.train.serialization import save_checkpoint, _save_graph
from mindspore.parallel._ps_context import _is_role_pserver, _get_ps_mode_rank
from mindspore.parallel._cell_wrapper import destroy_allgather_cell
from ._callback import Callback, set_cur_net
from ...common.tensor import Tensor
_cur_dir = os.getcwd()
_save_dir = _cur_dir
_info_list = ["epoch_num", "step_num"]
def _chg_ckpt_file_name_if_same_exist(directory, prefix):
"""Check if there is a file with the same name."""
files = os.listdir(directory)
suffix_num = 0
pre_len = len(prefix)
for filename in files:
name_ext = os.path.splitext(filename)
if name_ext[-1] != ".ckpt":
continue
# find same prefix file
if filename.find(prefix) == 0 and not filename[pre_len].isalpha():
# add the max suffix + 1
index = filename[pre_len:].find("-")
if index == 0:
suffix_num = max(suffix_num, 1)
elif index != -1:
num = filename[pre_len+1:pre_len+index]
if num.isdigit():
suffix_num = max(suffix_num, int(num)+1)
if suffix_num != 0:
prefix = prefix + "_" + str(suffix_num)
return prefix
[docs]class CheckpointConfig:
"""
The configuration of model checkpoint.
Note:
During the training process, if dataset is transmitted through the data channel,
It is suggested to set 'save_checkpoint_steps' to an integer multiple of loop_size.
Otherwise, the time to save the checkpoint may be biased.
Args:
save_checkpoint_steps (int): Steps to save checkpoint. Default: 1.
save_checkpoint_seconds (int): Seconds to save checkpoint.
Can't be used with save_checkpoint_steps at the same time. Default: 0.
keep_checkpoint_max (int): Maximum number of checkpoint files can be saved. Default: 5.
keep_checkpoint_per_n_minutes (int): Save the checkpoint file every `keep_checkpoint_per_n_minutes` minutes.
Can't be used with keep_checkpoint_max at the same time. Default: 0.
integrated_save (bool): Whether to perform integrated save function in automatic model parallel scene.
Integrated save function is only supported in automatic parallel scene, not supported
in manual parallel. Default: True.
async_save (bool): Whether asynchronous execution saves the checkpoint to a file. Default: False.
saved_network (Cell): Network to be saved in checkpoint file. If the saved_network has no relation
with the network in training, the initial value of saved_network will be saved. Default: None.
append_info (list): The information save to checkpoint file. Support "epoch_num"、"step_num"、and dict.
The key of dict must be str, the value of dict must be one of int float and bool. Default: None.
enc_key (Union[None, bytes]): Byte type key used for encryption. If the value is None, the encryption
is not required. Default: None.
enc_mode (str): This parameter is valid only when enc_key is not set to None. Specifies the encryption
mode, currently supports 'AES-GCM' and 'AES-CBC'. Default: 'AES-GCM'.
Raises:
ValueError: If input parameter is not the correct type.
Examples:
>>> from mindspore import Model, nn
>>> from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
>>>
>>> class LeNet5(nn.Cell):
>>> def __init__(self, num_class=10, num_channel=1):
>>> super(LeNet5, self).__init__()
>>> self.conv1 = nn.Conv2d(num_channel, 6, 5, pad_mode='valid')
>>> self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
>>> self.fc1 = nn.Dense(16 * 5 * 5, 120, weight_init=Normal(0.02))
>>> self.fc2 = nn.Dense(120, 84, weight_init=Normal(0.02))
>>> self.fc3 = nn.Dense(84, num_class, weight_init=Normal(0.02))
>>> self.relu = nn.ReLU()
>>> self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
>>> self.flatten = nn.Flatten()
>>>
>>> def construct(self, x):
>>> x = self.max_pool2d(self.relu(self.conv1(x)))
>>> x = self.max_pool2d(self.relu(self.conv2(x)))
>>> x = self.flatten(x)
>>> x = self.relu(self.fc1(x))
>>> x = self.relu(self.fc2(x))
>>> x = self.fc3(x)
>>> return x
>>>
>>> net = LeNet5()
>>> loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
>>> optim = nn.Momentum(net.trainable_params(), 0.01, 0.9)
>>> model = Model(net, loss_fn=loss, optimizer=optim)
>>> data_path = './MNIST_Data'
>>> dataset = create_dataset(data_path)
>>> config = CheckpointConfig(saved_network=net)
>>> ckpoint_cb = ModelCheckpoint(prefix='LeNet5', directory='./checkpoint', config=config)
>>> model.train(10, dataset, callbacks=ckpoint_cb)
"""
def __init__(self,
save_checkpoint_steps=1,
save_checkpoint_seconds=0,
keep_checkpoint_max=5,
keep_checkpoint_per_n_minutes=0,
integrated_save=True,
async_save=False,
saved_network=None,
append_info=None,
enc_key=None,
enc_mode='AES-GCM'):
if save_checkpoint_steps is not None:
save_checkpoint_steps = Validator.check_non_negative_int(save_checkpoint_steps)
if save_checkpoint_seconds is not None:
save_checkpoint_seconds = Validator.check_non_negative_int(save_checkpoint_seconds)
if keep_checkpoint_max is not None:
keep_checkpoint_max = Validator.check_non_negative_int(keep_checkpoint_max)
if keep_checkpoint_per_n_minutes is not None:
keep_checkpoint_per_n_minutes = Validator.check_non_negative_int(keep_checkpoint_per_n_minutes)
if saved_network is not None and not isinstance(saved_network, nn.Cell):
raise TypeError(f"The type of saved_network must be None or Cell, but got {str(type(saved_network))}.")
if not save_checkpoint_steps and not save_checkpoint_seconds and \
not keep_checkpoint_max and not keep_checkpoint_per_n_minutes:
raise ValueError("The input_param can't be all None or 0")
self._save_checkpoint_steps = save_checkpoint_steps
self._save_checkpoint_seconds = save_checkpoint_seconds
if self._save_checkpoint_steps and self._save_checkpoint_steps > 0:
self._save_checkpoint_seconds = None
self._keep_checkpoint_max = keep_checkpoint_max
self._keep_checkpoint_per_n_minutes = keep_checkpoint_per_n_minutes
if self._keep_checkpoint_max and self._keep_checkpoint_max > 0:
self._keep_checkpoint_per_n_minutes = None
else:
if not self._keep_checkpoint_per_n_minutes or self._keep_checkpoint_per_n_minutes == 0:
self._keep_checkpoint_max = 1
self._integrated_save = Validator.check_bool(integrated_save)
self._async_save = Validator.check_bool(async_save)
self._saved_network = saved_network
self._append_dict = self._handle_append_info(append_info)
self._enc_key = Validator.check_isinstance('enc_key', enc_key, (type(None), bytes))
self._enc_mode = Validator.check_isinstance('enc_mode', enc_mode, str)
@property
def save_checkpoint_steps(self):
"""Get the value of _save_checkpoint_steps."""
return self._save_checkpoint_steps
@property
def save_checkpoint_seconds(self):
"""Get the value of _save_checkpoint_seconds."""
return self._save_checkpoint_seconds
@property
def keep_checkpoint_max(self):
"""Get the value of _keep_checkpoint_max."""
return self._keep_checkpoint_max
@property
def keep_checkpoint_per_n_minutes(self):
"""Get the value of _keep_checkpoint_per_n_minutes."""
return self._keep_checkpoint_per_n_minutes
@property
def integrated_save(self):
"""Get the value of _integrated_save."""
return self._integrated_save
@property
def async_save(self):
"""Get the value of _async_save."""
return self._async_save
@property
def saved_network(self):
"""Get the value of _saved_network"""
return self._saved_network
@property
def enc_key(self):
"""Get the value of _enc_key"""
return self._enc_key
@property
def enc_mode(self):
"""Get the value of _enc_mode"""
return self._enc_mode
@property
def append_dict(self):
"""Get the value of append_dict."""
return self._append_dict
[docs] def get_checkpoint_policy(self):
"""Get the policy of checkpoint."""
checkpoint_policy = {'save_checkpoint_steps': self.save_checkpoint_steps,
'save_checkpoint_seconds': self.save_checkpoint_seconds,
'keep_checkpoint_max': self.keep_checkpoint_max,
'keep_checkpoint_per_n_minutes': self.keep_checkpoint_per_n_minutes,
'saved_network': self.saved_network}
return checkpoint_policy
@staticmethod
def _handle_append_info(append_info):
"""Handle ckpt append info."""
if append_info is None or append_info == []:
return None
if not isinstance(append_info, list):
raise TypeError(f"The type of append_info must list, but got {str(type(append_info))}.")
handle_append_info = {}
if "epoch_num" in append_info:
handle_append_info["epoch_num"] = 0
if "step_num" in append_info:
handle_append_info["step_num"] = 0
dict_num = 0
for element in append_info:
if not isinstance(element, str) and not isinstance(element, dict):
raise TypeError(f"The type of append_info element must be str or dict, but got {str(type(element))}.")
if isinstance(element, str) and element not in _info_list:
raise TypeError(f"The type of append_info element must be in {_info_list}, but got {element}.")
if isinstance(element, dict):
dict_num += 1
if dict_num > 1:
raise TypeError(f"The element of append_info must has only one dict.")
for key, value in element.items():
if isinstance(key, str) and isinstance(value, (int, float, bool)):
handle_append_info[key] = value
else:
raise TypeError(f"The type of dict in append_info must be key: str, value: int or float.")
return handle_append_info
[docs]class ModelCheckpoint(Callback):
"""
The checkpoint callback class.
It is called to combine with train process and save the model and network parameters after training.
Note:
In the distributed training scenario, please specify different directories for each training process
to save the checkpoint file. Otherwise, the training may fail.
Args:
prefix (str): The prefix name of checkpoint files. Default: "CKP".
directory (str): The path of the folder which will be saved in the checkpoint file.
By default, the file is saved in the current directory. Default: None.
config (CheckpointConfig): Checkpoint strategy configuration. Default: None.
Raises:
ValueError: If the prefix is invalid.
TypeError: If the config is not CheckpointConfig type.
"""
def __init__(self, prefix='CKP', directory=None, config=None):
super(ModelCheckpoint, self).__init__()
self._latest_ckpt_file_name = ""
self._init_time = time.time()
self._last_time = time.time()
self._last_time_for_keep = time.time()
self._last_triggered_step = 0
if not isinstance(prefix, str) or prefix.find('/') >= 0:
raise ValueError("Prefix {} for checkpoint file name invalid, "
"please check and correct it and then continue.".format(prefix))
self._prefix = prefix
if directory is not None:
self._directory = _make_directory(directory)
else:
self._directory = _cur_dir
if config is None:
self._config = CheckpointConfig()
else:
if not isinstance(config, CheckpointConfig):
raise TypeError("config should be CheckpointConfig type.")
self._config = config
# get existing checkpoint files
self._manager = CheckpointManager()
self._prefix = _chg_ckpt_file_name_if_same_exist(self._directory, self._prefix)
self._append_dict = self._config.append_dict or {}
self._append_epoch_num = self._append_dict["epoch_num"] if "epoch_num" in self._append_dict else 0
self._append_step_num = self._append_dict["step_num"] if "step_num" in self._append_dict else 0
self._graph_saved = False
self._need_flush_from_cache = True
[docs] def step_end(self, run_context):
"""
Save the checkpoint at the end of step.
Args:
run_context (RunContext): Context of the train running.
"""
if _is_role_pserver():
self._prefix = "PServer_" + str(_get_ps_mode_rank()) + "_" + self._prefix
cb_params = run_context.original_args()
_make_directory(self._directory)
# save graph (only once)
if not self._graph_saved:
graph_file_name = os.path.join(self._directory, self._prefix + '-graph.meta')
if os.path.isfile(graph_file_name) and context.get_context("mode") == context.GRAPH_MODE:
os.remove(graph_file_name)
_save_graph(cb_params.train_network, graph_file_name)
self._graph_saved = True
thread_list = threading.enumerate()
for thread in thread_list:
if thread.getName() == "asyn_save_ckpt":
thread.join()
self._save_ckpt(cb_params)
[docs] def end(self, run_context):
"""
Save the last checkpoint after training finished.
Args:
run_context (RunContext): Context of the train running.
"""
cb_params = run_context.original_args()
_to_save_last_ckpt = True
self._save_ckpt(cb_params, _to_save_last_ckpt)
thread_list = threading.enumerate()
for thread in thread_list:
if thread.getName() == "asyn_save_ckpt":
thread.join()
destroy_allgather_cell()
def _check_save_ckpt(self, cb_params, force_to_save):
"""Check whether save checkpoint files or not."""
if self._config.save_checkpoint_steps and self._config.save_checkpoint_steps > 0:
if cb_params.cur_step_num >= self._last_triggered_step + self._config.save_checkpoint_steps \
or force_to_save is True:
return True
elif self._config.save_checkpoint_seconds and self._config.save_checkpoint_seconds > 0:
self._cur_time = time.time()
if (self._cur_time - self._last_time) > self._config.save_checkpoint_seconds or force_to_save is True:
self._last_time = self._cur_time
return True
return False
def _save_ckpt(self, cb_params, force_to_save=False):
"""Save checkpoint files."""
if cb_params.cur_step_num == self._last_triggered_step:
return
# if param is cache enable, flush data from cache to host before save_ckpt
if self._need_flush_from_cache:
self._flush_from_cache(cb_params)
save_ckpt = self._check_save_ckpt(cb_params, force_to_save)
step_num_in_epoch = int((cb_params.cur_step_num - 1) % cb_params.batch_num + 1)
if save_ckpt:
cur_ckpoint_file = self._prefix + "-" + str(cb_params.cur_epoch_num) + "_" \
+ str(step_num_in_epoch) + ".ckpt"
# update checkpoint file list.
self._manager.update_ckpoint_filelist(self._directory, self._prefix)
# keep checkpoint files number equal max number.
if self._config.keep_checkpoint_max and 0 < self._config.keep_checkpoint_max <= self._manager.ckpoint_num:
self._manager.remove_oldest_ckpoint_file()
elif self._config.keep_checkpoint_per_n_minutes and self._config.keep_checkpoint_per_n_minutes > 0:
self._cur_time_for_keep = time.time()
if (self._cur_time_for_keep - self._last_time_for_keep) \
< self._config.keep_checkpoint_per_n_minutes * 60:
self._manager.keep_one_ckpoint_per_minutes(self._config.keep_checkpoint_per_n_minutes,
self._cur_time_for_keep)
# generate the new checkpoint file and rename it.
global _save_dir
_save_dir = self._directory
cur_file = os.path.join(self._directory, cur_ckpoint_file)
self._last_time_for_keep = time.time()
self._last_triggered_step = cb_params.cur_step_num
if context.get_context("enable_ge"):
set_cur_net(cb_params.train_network)
cb_params.train_network.exec_checkpoint_graph()
if "epoch_num" in self._append_dict:
self._append_dict["epoch_num"] = self._append_epoch_num + cb_params.cur_epoch_num
if "step_num" in self._append_dict:
self._append_dict["step_num"] = self._append_step_num + cb_params.cur_step_num
network = self._config.saved_network if self._config.saved_network is not None else cb_params.train_network
save_checkpoint(network, cur_file, self._config.integrated_save, self._config.async_save,
self._append_dict, self._config.enc_key, self._config.enc_mode)
self._latest_ckpt_file_name = cur_file
def _flush_from_cache(self, cb_params):
"""Flush cache data to host if tensor is cache enable."""
has_cache_params = False
params = cb_params.train_network.get_parameters()
for param in params:
if param.cache_enable:
has_cache_params = True
Tensor(param).flush_from_cache()
if not has_cache_params:
self._need_flush_from_cache = False
@property
def latest_ckpt_file_name(self):
"""Return the latest checkpoint path and file name."""
return self._latest_ckpt_file_name
class CheckpointManager:
"""Manage checkpoint files according to train_config of checkpoint."""
def __init__(self):
self._ckpoint_filelist = []
@property
def ckpoint_filelist(self):
"""Get all the related checkpoint files managed here."""
return self._ckpoint_filelist
@property
def ckpoint_num(self):
"""Get the number of the related checkpoint files managed here."""
return len(self._ckpoint_filelist)
def update_ckpoint_filelist(self, directory, prefix):
"""Update the checkpoint file list."""
self._ckpoint_filelist = []
files = os.listdir(directory)
for filename in files:
if os.path.splitext(filename)[-1] == ".ckpt" and filename.startswith(prefix):
mid_name = filename[len(prefix):-5]
flag = not (True in [char.isalpha() for char in mid_name])
if flag:
self._ckpoint_filelist.append(directory + '/' + filename)
def remove_ckpoint_file(self, file_name):
"""Remove the specified checkpoint file from this checkpoint manager and also from the directory."""
try:
os.chmod(file_name, stat.S_IWRITE)
os.remove(file_name)
self._ckpoint_filelist.remove(file_name)
except OSError:
logger.warning("OSError, failed to remove the older ckpt file %s.", file_name)
except ValueError:
logger.warning("ValueError, failed to remove the older ckpt file %s.", file_name)
def remove_oldest_ckpoint_file(self):
"""Remove the oldest checkpoint file from this checkpoint manager and also from the directory."""
ckpoint_files = sorted(self._ckpoint_filelist, key=os.path.getmtime)
self.remove_ckpoint_file(ckpoint_files[0])
def keep_one_ckpoint_per_minutes(self, minutes, cur_time):
"""Only keep the latest one ckpt file per minutes, remove other files generated in [last_time, cur_time]."""
del_list = []
oldest_file = ''
oldest_time = cur_time
for ck_file in self._ckpoint_filelist:
modify_time = os.path.getmtime(ck_file)
if cur_time - modify_time < 60 * minutes:
del_list.append(ck_file)
if modify_time < oldest_time:
oldest_time = modify_time
oldest_file = ck_file
for mv_file in del_list:
if mv_file == oldest_file:
continue
self.remove_ckpoint_file(mv_file)