Source code for mindspore.profiler.profiling

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Profiling api file."""
import os
import re
import stat
import time
import json
from enum import Enum

from mindspore import log as logger, context
from mindspore.communication.management import GlobalComm, release, get_rank
import mindspore._c_expression as c_expression
from mindspore.dataset.core.config import _stop_dataset_profiler
from mindspore.profiler.common.exceptions.exceptions import ProfilerFileNotFoundException, \
    ProfilerIOException, ProfilerException, ProfilerRawFileException
from mindspore.profiler.common.util import get_file_names, fwrite_format
from mindspore.profiler.common.validator.validate_path import \
    validate_and_normalize_path
from mindspore.profiler.parser.aicpu_data_parser import DataPreProcessParser
from mindspore.profiler.parser.framework_parser import FrameworkParser
from mindspore.profiler.parser.hwts_log_parser import HWTSLogParser
from mindspore.profiler.parser.integrator import Integrator
from mindspore.profiler.parser.integrator import GpuTimelineGenerator, AscendTimelineGenerator
from mindspore.profiler.parser.memory_usage_parser import MemoryUsageParser
from mindspore.profiler.parser.minddata_parser import MinddataParser
from mindspore.profiler.parser.minddata_analyzer import MinddataProfilingAnalyzer
from mindspore.profiler.parser.flops_parser import FlopsParser
from mindspore.profiler.parser.minddata_pipeline_parser import \
    MinddataPipelineParser
from mindspore.profiler.parser.optime_parser import OPComputeTimeParser
from mindspore.profiler.parser.step_trace_parser import GpuStepTraceParser, AscendStepTraceParser
from mindspore.profiler.parser.hccl_parser import HcclParser
from mindspore.nn.cell import Cell

INIT_OP_NAME = 'Default/InitDataSetQueue'

[docs]class ProfileOption(Enum): """ Profile Option Enum which be used in Profiler.profile. """ trainable_parameters = 0
[docs]class Profiler: """ Performance profiling API. This API enables MindSpore users to profile the performance of neural network. Profiler supports Ascend and GPU, both of them are used in the same way, but only output_path in args works on GPU. Args: output_path (str): Output data path. optypes_not_deal (str): (Ascend only) Op type names, determine the data of which optype should be collected and analysed,will deal with all op if null; Different op types should be separated by comma. ascend_job_id (str): (Ascend only) The directory where the profiling files to be parsed are located; This parameter is used to support offline parsing. profile_communication(bool): Whether to collect communication performance data, collect when True. Default is False. profile_memory(bool): Whether to collect tensor memory data, collect when True.Default is False. Examples: >>> import numpy as np >>> from mindspore import nn, context >>> from mindspore.train import Model >>> import mindspore.dataset as ds >>> from mindspore.profiler import Profiler >>> >>> >>> class Net(nn.Cell): ... def __init__(self): ... super(Net, self).__init__() ... self.fc = nn.Dense(2,2) ... def construct(self, x): ... return self.fc(x) >>> >>> def generator(): ... for i in range(2): ... yield (np.ones([2, 2]).astype(np.float32), np.ones([2]).astype(np.int32)) >>> >>> def train(net): ... optimizer = nn.Momentum(net.trainable_params(), 1, 0.9) ... loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True) ... data = ds.GeneratorDataset(generator, ["data", "label"]) ... model = Model(net, loss, optimizer) ... model.train(1, data) >>> >>> if __name__ == '__main__': ... # If the device_target is GPU, set the device_target to "GPU" ... context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") ... ... # Init Profiler ... # Note that the Profiler should be initialized after context.set_context and before model.train ... # If you are running in parallel mode on Ascend, the Profiler should be initialized before HCCL ... # initialized. ... profiler = Profiler() ... ... # Train Model ... net = Net() ... train(net) ... ... # Profiler end ... profiler.analyse() """ _hwts_output_filename_target = "output_format_data_hwts_" _opcompute_output_filename_target = "output_op_compute_time_" _aicpu_op_output_filename_target = "output_data_preprocess_aicpu_" def __init__(self, **kwargs): # get device_id and device_target self._get_devid_and_devtarget() self._get_output_path(kwargs) self._profile_communication = False os.environ['PROFILING_MODE'] = 'true' os.environ['MINDDATA_PROFILING_DIR'] = self._output_path if self._device_target: CPUProfiler = c_expression.CPUProfiler self._cpu_profiler = CPUProfiler.get_instance() self._cpu_profiler.init(self._output_path) self._cpu_profiler.step_profiling_enable(True) if self._device_target and self._device_target == "GPU": GPUProfiler = c_expression.GPUProfiler self._gpu_profiler = GPUProfiler.get_instance() self._gpu_profiler.init(self._output_path) self._gpu_profiler.step_profiling_enable(True) if GlobalComm.WORLD_COMM_GROUP == "nccl_world_group": self._dev_id = str(get_rank()) os.environ['DEVICE_ID'] = self._dev_id if kwargs: logger.warning("Params not be supported yet on GPU.") elif self._device_target and self._device_target == "Ascend": optypes_not_deal = kwargs.pop("optypes_not_deal", "Variable") if not isinstance(optypes_not_deal, str): raise TypeError("The parameter optypes_not_deal must be str.") job_dir = kwargs.pop("ascend_job_id", "") if job_dir: job_dir = validate_and_normalize_path(job_dir) if not os.path.exists(job_dir): msg = f"Invalid ascend_job_id: {job_dir}, Please pass the absolute path of the JOB dir" logger.error(msg) raise ValueError(msg) self._output_path, _ = os.path.split(job_dir) self._profile_communication = kwargs.pop("profile_communication", False) if not isinstance(self._profile_communication, bool): raise TypeError("The parameter profile_communication must be bool.") if self._profile_communication: hccl_option = {"output": self._output_path, "task_trace": "on"} os.environ['PROFILING_OPTIONS'] = json.dumps(hccl_option) self._profile_memory = kwargs.pop("profile_memory", False) if not isinstance(self._profile_memory, bool): raise TypeError("The parameter profile_memory must be bool") if kwargs: logger.warning("There are invalid params which don't work.") os.environ['DEVICE_ID'] = self._dev_id profiling_options = json.dumps(self._construct_profiling_options()) # Characters longer than 2048 are ignored, resulting in profiling option resolution errors if len(profiling_options) > 2048: msg = "The parameter length exceeds the limit (2048), please input valid parameters." logger.error(msg) raise ValueError(msg) # use context interface to open profiling, for the new mindspore version(after 2020.5.21) context.set_context(enable_profiling=True, profiling_options=profiling_options) base_profiling_container_path = os.path.join(self._output_path, "container") container_path = os.path.join(base_profiling_container_path, self._dev_id) data_path = os.path.join(container_path, "data") data_path = validate_and_normalize_path(data_path) if not os.path.exists(data_path): os.makedirs(data_path, exist_ok=True) self._filt_optype_names = optypes_not_deal.split(",") if optypes_not_deal else [] # add job id env through user input later self._job_id_env = 0 self._start_time = int(time.time() * 10000000) logger.info("Profiling: profiling start time: %d", self._start_time) def _construct_profiling_options(self): """ Construct profiling options to determine which profiling data should be collected. """ profile_memory = "off" if self._profile_memory: profile_memory = "on" fp_point = os.environ.get("PROFILING_FP_START", "") bp_point = os.environ.get("PROFILING_BP_END", "") profiling_options = { "output": self._output_path, "fp_point": fp_point, "bp_point": bp_point, "training_trace": "on", "task_trace": "on", "aic_metrics": "PipeUtilization", "aicpu": "on", "profile_memory": profile_memory } return profiling_options
[docs] def analyse(self): """ Collect and analyse performance data, called after training or during training. The example shows above. """ self._cpu_profiler.stop() _stop_dataset_profiler() if self._device_target and self._device_target == "GPU": self._gpu_analyse() elif self._device_target and self._device_target == "Ascend": self._ascend_analyse()
def _ascend_analyse(self): """Collect and analyse ascend performance data""" release() job_id = self._get_profiling_job_id() logger.info("Profiling: job id is %s ", job_id) source_path = os.path.join(self._output_path, job_id) # parse hwts.log.data.45.dev file, and get task profiling data hwts_output_filename = self._hwts_output_filename_target + self._dev_id + ".txt" hwts_output_filename = os.path.join(self._output_path, hwts_output_filename) source_path = validate_and_normalize_path(source_path) hwts_output_filename = validate_and_normalize_path(hwts_output_filename) hwtslog_parser = HWTSLogParser(source_path, hwts_output_filename) hwtslog_parser.execute() # parse Framework file, and get the relation of op and tasks framework_parser = FrameworkParser(job_id, self._dev_id, self._output_path) framework_parser.parse() op_task_dict = framework_parser.to_task_id_full_op_name_dict() if not op_task_dict: logger.error("Profiling: fail to parse framework files.") return # get op compute time from hwts data and framework data, write output_op_compute_time.txt opcompute_output_filename = self._opcompute_output_filename_target + self._dev_id + ".txt" opcompute_output_filename = os.path.join(self._output_path, opcompute_output_filename) opcompute_output_filename = validate_and_normalize_path(opcompute_output_filename) optime_parser = OPComputeTimeParser( hwts_output_filename, opcompute_output_filename, op_task_dict, self._output_path, self._dev_id ) optime_parser.execute() # parse DATA_PREPROCESS.dev.AICPU file, write output_data_preprocess_aicpu_x.txt output_data_preprocess_aicpu = self._aicpu_op_output_filename_target + self._dev_id + ".txt" output_data_preprocess_aicpu = os.path.join(self._output_path, output_data_preprocess_aicpu) output_data_preprocess_aicpu = validate_and_normalize_path(output_data_preprocess_aicpu) aicpu_data_parser = DataPreProcessParser(source_path, output_data_preprocess_aicpu) aicpu_data_parser.execute() # get op FLOPs from aicore.data.x.slice.0 file, and compute FLOPS, write output_op_flops_x.txt flops_parser = FlopsParser(source_path, self._output_path, op_task_dict, self._dev_id) flops_parser.execute() # Parsing minddata AICPU profiling MinddataParser.execute(source_path, self._output_path, self._dev_id) # parse minddata pipeline operator and queue try: pipeline_parser = MinddataPipelineParser(self._output_path, self._dev_id, self._output_path) pipeline_parser.parse() except ProfilerException as err: logger.warning(err.message) # Analyze minddata information try: md_analyzer = MinddataProfilingAnalyzer(self._output_path, self._device_target, self._dev_id, self._output_path) md_analyzer.analyze() except ProfilerException as err: logger.warning(err.message) # analyse op compute time info try: self._analyser_op_info() except ProfilerException as err: logger.warning(err.message) # analyse step trace info points = None try: points = self._analyse_step_trace(source_path, framework_parser) except ProfilerException as err: logger.warning(err.message) # analyse timeline info try: self._analyse_timeline(aicpu_data_parser, optime_parser, source_path) except (ProfilerIOException, ProfilerFileNotFoundException, RuntimeError) as err: logger.warning('Fail to write timeline data: %s', err) # analyse memory usage info if self._profile_memory: try: self._analyse_memory_usage(points) except (ProfilerIOException, ProfilerFileNotFoundException, ProfilerRawFileException) as err: logger.warning(err.message) # analyse hccl profiler info if self._profile_communication: try: self._analyse_hccl_info() except (ProfilerIOException, ProfilerFileNotFoundException, ProfilerRawFileException) as err: logger.warning(err.message) os.environ['PROFILING_MODE'] = str("false") context.set_context(enable_profiling=False) def _gpu_analyse(self): """Collect and analyse gpu performance data""" self._dev_id = context.get_context("device_id") if GlobalComm.WORLD_COMM_GROUP == "nccl_world_group": self._dev_id = str(get_rank()) self._gpu_profiler.stop() timeline_generator = self._generate_timeline() # parse minddata pipeline operator and queue for GPU try: pipeline_parser = MinddataPipelineParser(self._output_path, self._dev_id, self._output_path) pipeline_parser.parse() except ProfilerException as err: logger.warning(err.message) # Analyze minddata information try: md_analyzer = MinddataProfilingAnalyzer(self._output_path, self._device_target, self._dev_id, self._output_path) md_analyzer.analyze() except ProfilerException as err: logger.warning(err.message) # analyse step trace info try: self._analyse_step_trace( is_training_mode_flag=timeline_generator.check_op_name('Gradients'), is_gpu_kernel_async_launch_flag=timeline_generator.is_gpu_kernel_async_launch() ) except ProfilerException as err: logger.warning(err.message) os.environ['PROFILING_MODE'] = str("false") logger.warning( '\nMemory Usage is not supported on GPU currently.\n' 'Please running on Ascend if you would like to see memory analysis, ' 'otherwise, this warning can be ignored.' ) def _analyse_step_trace(self, source_path=None, framework_parser=None, is_training_mode_flag=True, is_gpu_kernel_async_launch_flag=False): """ Analyse step trace data and save the result. Args: source_path (str): The directory that contains the step trace original data. framework_parser (FrameworkParser): The framework parse instance. is_training_mode_flag (bool): Whether in training mode or not. """ logger.info("Begin to parse step trace.") # construct output path step_trace_intermediate_file_path = os.path.join( self._output_path, f'step_trace_raw_{self._dev_id}_detail_time.csv' ) point_info_file_path = os.path.join( self._output_path, f'step_trace_point_info_{self._dev_id}.json' ) step_trace_intermediate_file_path = validate_and_normalize_path(step_trace_intermediate_file_path) point_info_file_path = validate_and_normalize_path(point_info_file_path) if self._device_target and self._device_target == 'GPU': input_file_path = os.path.join( self._output_path, f'step_trace_profiling_{self._dev_id}.txt' ) parser = GpuStepTraceParser(input_dir=input_file_path, output_file_path=step_trace_intermediate_file_path, is_training_mode=is_training_mode_flag, is_gpu_kernel_async_launch=is_gpu_kernel_async_launch_flag) parser.parse_and_save() point_info = parser.record_point_info(input_file_path, point_info_file_path) else: # whether keep the first step skip_first_step_flag = framework_parser.check_op_name(INIT_OP_NAME) point_info = framework_parser.point_info # recognize inference or training mode is_traning_mode_flag = framework_parser.check_op_name("Gradients") # parser the step trace files and save the result to disk source_path = validate_and_normalize_path(source_path) parser = AscendStepTraceParser(input_dir=source_path, output_file_path=step_trace_intermediate_file_path, job_id=self._job_id_env, skip_first_step=skip_first_step_flag, is_training_mode=is_traning_mode_flag) parser.update_tag_op_type_map(point_info) parser.parse_and_save() point_info = parser.record_point_info(point_info, point_info_file_path) # print parser result parser.show() logger.info("Finish saving the intermediate result: %s", step_trace_intermediate_file_path) logger.info("The point info is: %s", point_info) return point_info def _analyse_timeline(self, aicpu_parser, optime_parser, source_path): """ Analyse and parse timeline info. Args: aicpu_parser (DataPreProcessParser): The parser instance for AI CPU operator execution time calculation. optime_parser (OPComputeTimeParserParser): The parser instance for AI Core operator execution time calculation. """ timeline_analyser = AscendTimelineGenerator(self._output_path, self._dev_id) # Get framework info integrator = Integrator(self._output_path, self._dev_id) aicore_detail_data = integrator.get_aicore_detail_data() aicore_detail_data_size = len(aicore_detail_data) col_names = ['op_name', 'op_type', 'avg_execution_time', 'subgraph', 'full_op_name', 'op_info'] framework_info = { 'col_name': col_names, 'object': aicore_detail_data, 'size': aicore_detail_data_size } all_reduce_info = integrator.query_for_all_reduce() # Get timeline info logger.info('Start writing timeline info...') logger.info('Warm Prompt: It could take a few minutes if you are training ' 'with a complex network or more than 10 steps.') # Add info into timeline, such as AI CPU, AllReduce, framework info. aicpu_info = aicpu_parser.query_aicpu_data() min_cycle_counter = min(aicpu_parser.min_cycle_counter, optime_parser.min_cycle_counter) timeline_analyser.init_timeline(all_reduce_info, framework_info, aicpu_info, min_cycle_counter, source_path) size_limit = 100 * 1024 * 1024 # 100MB timeline_analyser.write_timeline(size_limit) timeline_analyser.write_timeline_summary() def _generate_timeline(self): """Used for gpu, generate timeline info, write to json format file.""" try: size_limit = 100 * 1024 * 1024 # 100MB timeline_generator = GpuTimelineGenerator(self._output_path, self._dev_id) timeline_generator.init_timeline() timeline_generator.write_timeline(size_limit) timeline_generator.write_timeline_summary() return timeline_generator except (ProfilerIOException, ProfilerFileNotFoundException, RuntimeError) as err: logger.warning('Fail to write timeline data: %s', err) raise RuntimeError('Fail to write timeline data.') def _analyse_memory_usage(self, points): """Analyse memory usage data.""" integrator = Integrator(self._output_path, self._dev_id) aicore_detail_data = integrator.get_aicore_detail_data() memory_parser = MemoryUsageParser(self._output_path, self._dev_id) memory_parser.init_memory_usage_info(aicore_detail_data, points) memory_parser.write_memory_files() def _get_profiling_job_id(self): """Get profiling job id, which was generated by ada service. Returns: str, profiling job id. """ job_id = "" for item in os.listdir(self._output_path): if item.startswith('JOB'): path = os.path.join(self._output_path, item) log_file = get_file_names(path, "host_start.log") if not log_file: logger.error("Profiling: job path %s, host_start.log not exist.", path) continue training_device_id = log_file[0].split('.')[-1] if self._dev_id == training_device_id: log_file = os.path.join(path, log_file[0]) job_start_time = self._parse_host_start_log(log_file) if not job_start_time: logger.error("Profiling: job path %s, fail to get job start info.", path) break job_id = item if self._start_time > int(job_start_time): logger.info("Profiling: job path %s, start_time %s, training start_time %d.", path, job_start_time, self._start_time) break else: logger.info("Profiling: job path %s, dev id %s, training device id %s.", path, training_device_id, self._dev_id) if not job_id: msg = "Fail to get profiling job, please check whether job dir was generated, " \ "or may be the device id from job dir dismatch the device_id in current process." raise RuntimeError(msg) return job_id def _parse_host_start_log(self, input_file): """ Parse host start log file, get the start time of the job. Args: input_file (str): The file path of the host start log file. Returns: str, job start time. """ job_start_time = "" with open(input_file) as f: for line in f.readlines(): if "clock_realtime" in line: # 16 means the first digit of the timestamp, len(line)-3 means the last. job_start_time = line[16:len(line)-3] return job_start_time def _analyser_op_info(self): """Analyse the operator information.""" integrator = Integrator(self._output_path, self._dev_id) integrator.integrate() aicore_type_result = self._query_op_type_info() detail_file_path = os.path.join( self._output_path, 'output_op_compute_time_detail_{}.txt'.format(self._dev_id) ) fwrite_format(detail_file_path, data_source='title:op compute time') display_names = [ 'optype_name', 'compute_time(ms, per-step)', 'called_times(per-step)', 'percent' ] fwrite_format(detail_file_path, data_source=" ".join(display_names), is_print=True) fwrite_format(detail_file_path, data_source=aicore_type_result, is_print=True) op_type_order = [item[0] for item in aicore_type_result] aicore_detail_result = self._query_op_detail_info(op_type_order) fwrite_format(detail_file_path, data_source='', is_print=True) fwrite_format(detail_file_path, data_source='Detail:', is_print=True) fwrite_format(detail_file_path, data_source=" ".join(aicore_detail_result.get('col_name_detail')), is_print=True) fwrite_format(detail_file_path, data_source=aicore_detail_result.get('object'), is_print=True) def _query_op_type_info(self): """ Query AICORE operator type information. Returns: list[list], the AICORE operator type and execution time information. """ integrator = Integrator(self._output_path, self._dev_id) return integrator.get_aicore_data() def _query_op_detail_info(self, op_type_order): """ Query AICORE operator detail information. Args: op_type_order(list): The name of the op type in order. Returns: dict, the AICORE operator detail information. """ op_type_condition = {} if self._filt_optype_names: op_type_condition['not_in'] = self._filt_optype_names filter_condition = { 'op_type': op_type_condition, 'is_display_detail': False, } integrator = Integrator(self._output_path, self._dev_id) return integrator.query_and_sort_by_op_type(filter_condition, op_type_order) def _get_devid_and_devtarget(self): """Get device id and target of this training.""" device_target = "" dev_id = "" try: dev_id = str(context.get_context("device_id")) device_target = context.get_context("device_target") except ValueError as err: logger.error("Profiling: fail to get context, %s", err) if not dev_id or not dev_id.isdigit(): dev_id = os.getenv('DEVICE_ID') if not dev_id or not dev_id.isdigit(): dev_id = "0" logger.error("Fail to get DEVICE_ID, use 0 instead.") if device_target and device_target not in ["Ascend", "GPU"]: msg = "Profiling: unsupported backend: %s" % device_target raise RuntimeError(msg) self._dev_id = dev_id self._device_target = device_target def _get_output_path(self, kwargs): """Get output path of profiling data.""" current_time = int(time.time()) # to avoid getting different timestamp from different process in multi-card training, # set the timestamp as exist timestamp if it's difference is less than 6 seconds. def _select_timestamp(dir_name, re_pattern, input_time): """select the timestamp from current_time and exist timestamp.""" timestamp_diff_threshold = 6 exist_timestamp_list = [] select_time = input_time if not os.path.exists(dir_name): os.makedirs(dir_name, exist_ok=True) for file_name in os.listdir(dir_name): match_res = re_pattern.match(file_name) if match_res: exist_timestamp_list.append(int(match_res.group(1))) if exist_timestamp_list: time_diff_list = [input_time - timestamp for timestamp in exist_timestamp_list] min_time_diff = min(time_diff_list) if min_time_diff <= timestamp_diff_threshold: select_time = exist_timestamp_list[time_diff_list.index(min_time_diff)] return select_time if "output_path" not in kwargs: selected_timestamp = _select_timestamp(os.getcwd(), re.compile(r'data-(\d+)'), current_time) output_path = f"data-{selected_timestamp}" self._output_path = validate_and_normalize_path(output_path) else: output_path = kwargs.pop("output_path") self._output_path = validate_and_normalize_path(output_path) selected_timestamp = _select_timestamp(self._output_path, re.compile(r'profiler-(\d+)'), current_time) self._output_path = os.path.join(self._output_path, f"profiler-{selected_timestamp}") if not os.path.exists(self._output_path): os.makedirs(self._output_path, exist_ok=True) os.chmod(self._output_path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) else: logger.warning("The target dir already exists. " "There may be some old profiling data, and they will be rewrote in the end.") def _analyse_hccl_info(self): """Analyse hccl info.""" hccl_path = os.path.join(self._output_path, "hccl_info") if not os.path.exists(hccl_path): os.makedirs(hccl_path, exist_ok=True) os.chmod(hccl_path, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR) # Call the interface HCCLParseOP parsing hccl info. try: from hccl_parser.entry import hccl_parse_op hccl_parse_op(self._dev_id, self._output_path, hccl_path, op_type='all') except ImportError as err: logger.error("%s,please check if the hccl_parser-{version}-py3-none-any.whl is installed." "The hccl_parser-{version}-py3-none-any.whl package is usually located " "in the /usr/local/Ascend/tools Directory", err) raise ImportError(err) hccl_parse = HcclParser(hccl_path, self._dev_id, self._output_path) hccl_parse.parse()
[docs] @staticmethod def profile(network=None, profile_option=None): """ Get the number of trainable parameters in the training network. Args: network (Cell): The training network. profile_option (ProfileOption): The profile option. Returns: dict, the key is the option name, the value is the result of option. """ result = dict() if not profile_option: raise ValueError("The parameter profile_option must pass a value using ProfileOption.") if profile_option == ProfileOption.trainable_parameters: if not isinstance(network, Cell): msg = "Profiling: The network should be an object of nn.Cell" raise ValueError(msg) param_nums = len(network.parameters_dict()) result = {"trainable_parameters": param_nums} else: raise ValueError("Wrong options.") return result