Source code for mindspore.nn.metrics.topk

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Topk."""
import numpy as np
from .metric import Metric, rearrange_inputs


[docs]class TopKCategoricalAccuracy(Metric): """ Calculates the top-k categorical accuracy. Note: The method `update` must receive input of the form :math:`(y_{pred}, y)`. If some samples have the same accuracy, the first sample will be chosen. Args: k (int): Specifies the top-k categorical accuracy to compute. Raises: TypeError: If `k` is not int. ValueError: If `k` is less than 1. Examples: >>> import numpy as np >>> from mindspore import nn, Tensor >>> >>> x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.], ... [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32) >>> y = Tensor(np.array([2, 0, 1]), mindspore.float32) >>> topk = nn.TopKCategoricalAccuracy(3) >>> topk.clear() >>> topk.update(x, y) >>> output = topk.eval() >>> print(output) 0.6666666666666666 """ def __init__(self, k): super(TopKCategoricalAccuracy, self).__init__() if not isinstance(k, int): raise TypeError('k should be integer type, but got {}'.format(type(k))) if k < 1: raise ValueError('k must be at least 1, but got {}'.format(k)) self.k = k self.clear()
[docs] def clear(self): """Clear the internal evaluation result.""" self._correct_num = 0 self._samples_num = 0
[docs] @rearrange_inputs def update(self, *inputs): """ Updates the internal evaluation result y_pred and y. Args: inputs: Input y_pred and y. y_pred and y are Tensor, list or numpy.ndarray. y_pred is in most cases (not strictly) a list of floating numbers in range :math:`[0, 1]` and the shape is :math:`(N, C)`, where :math:`N` is the number of cases and :math:`C` is the number of categories. y contains values of integers. The shape is :math:`(N, C)` if one-hot encoding is used. Shape can also be :math:`(N,)` if category index is used. """ if len(inputs) != 2: raise ValueError('Topk need 2 inputs (y_pred, y), but got {}'.format(len(inputs))) y_pred = self._convert_data(inputs[0]) y = self._convert_data(inputs[1]) if y_pred.ndim == y.ndim and self._check_onehot_data(y): y = y.argmax(axis=1) indices = np.argsort(-y_pred, axis=1)[:, :self.k] repeated_y = y.reshape(-1, 1).repeat(self.k, axis=1) correct = np.equal(indices, repeated_y).sum(axis=1) self._correct_num += correct.sum() self._samples_num += repeated_y.shape[0]
[docs] def eval(self): """ Computes the top-k categorical accuracy. Returns: Float, computed result. """ if self._samples_num == 0: raise RuntimeError('Total samples num must not be 0.') return self._correct_num / self._samples_num
[docs]class Top1CategoricalAccuracy(TopKCategoricalAccuracy): """ Calculates the top-1 categorical accuracy. This class is a specialized class for TopKCategoricalAccuracy. Refer to :class:`TopKCategoricalAccuracy` for more details. Examples: >>> x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.], ... [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32) >>> y = Tensor(np.array([2, 0, 1]), mindspore.float32) >>> topk = nn.Top1CategoricalAccuracy() >>> topk.clear() >>> topk.update(x, y) >>> output = topk.eval() >>> print(output) 0.0 """ def __init__(self): super(Top1CategoricalAccuracy, self).__init__(1)
[docs]class Top5CategoricalAccuracy(TopKCategoricalAccuracy): """ Calculates the top-5 categorical accuracy. This class is a specialized class for TopKCategoricalAccuracy. Refer to :class:`TopKCategoricalAccuracy` for more details. Examples: >>> x = Tensor(np.array([[0.2, 0.5, 0.3, 0.6, 0.2], [0.1, 0.35, 0.5, 0.2, 0.], ... [0.9, 0.6, 0.2, 0.01, 0.3]]), mindspore.float32) >>> y = Tensor(np.array([2, 0, 1]), mindspore.float32) >>> topk = nn.Top5CategoricalAccuracy() >>> topk.clear() >>> topk.update(x, y) >>> output = topk.eval() >>> print(output) 1.0 """ def __init__(self): super(Top5CategoricalAccuracy, self).__init__(5)