# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Time Distributed."""
from mindspore.ops.primitive import constexpr, Primitive
from mindspore.ops import Reshape, Transpose, Stack, Unstack
from mindspore.common import Tensor
from mindspore._checkparam import Validator
from ..cell import Cell
__all__ = ['TimeDistributed']
@constexpr
def _check_reshape_pos(reshape_pos, inputs_shape, outputs_shape):
if reshape_pos >= len(outputs_shape) or inputs_shape[reshape_pos] != outputs_shape[reshape_pos]:
raise ValueError("The parameter reshape_with_axis is invalid in the input and output of TimeDistributed. "
"You may try pass parameters without reshape_with_axis.")
@constexpr
def _check_expand_dims_axis(time_axis, ndim):
if time_axis > ndim:
raise ValueError("The parameter time_axis is invalid in the input. "
"The value of time_axis should be in range of [{}, {}].".format(-ndim - 1, ndim))
@constexpr
def _generate_perm(axis_a, axis_b, length):
perm = tuple(range(length))
axis_a, axis_b = (axis_a, axis_b) if axis_a < axis_b else (axis_b, axis_a)
return perm[:axis_a] + (perm[axis_b],) + perm[axis_a: axis_b] + perm[axis_b + 1:]
@constexpr
def _check_data(flag):
if not flag:
raise TypeError("The inputs and outputs shuould be a Tensor.")
@constexpr
def _check_inputs_dim(shape):
if len(shape) < 3:
raise ValueError("The inputs should be at least 3D.")
[docs]class TimeDistributed(Cell):
r"""
The time distributed layer.
Time distributed is a wrapper which allows to apply a layer to every temporal slice of an input.
And the `x` should be at least 3D.
There are two cases in the implementation.
When reshape_with_axis provided, the reshape method will be chosen, which is more efficient;
otherwise, the method of dividing the inputs along time axis will be used, which is more general.
For example, reshape_with_axis could not be provided when deal with Batch Normalization.
Args:
layer(Union[Cell, Primitive]): The Cell or Primitive which will be wrapped.
time_axis(int): The axis of time_step.
reshape_with_axis(int): The axis which will be reshaped with time_axis. Default: None.
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N, T, *)`,
where :math:`*` means any number of additional dimensions.
Outputs:
Tensor of shape :math:`(N, T, *)`
Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
Raises:
TypeError: If layer is not a Cell or Primitive.
Examples:
>>> x = Tensor(np.random.random([32, 10, 3]), mindspore.float32)
>>> dense = nn.Dense(3, 6)
>>> net = nn.TimeDistributed(dense, time_axis=1, reshape_with_axis=0)
>>> output = net(x)
>>> print(output.shape)
(32, 10, 6)
"""
def __init__(self, layer, time_axis, reshape_with_axis=None):
"""Initialize TimeDistributed."""
if not isinstance(layer, (Cell, Primitive)):
raise TypeError("Please initialize TimeDistributed with mindspore.nn.Cell or "
"mindspore.ops.Primitive instance. You passed: {input}".format(input=layer))
super(TimeDistributed, self).__init__()
Validator.check_is_int(time_axis)
if reshape_with_axis is not None:
Validator.check_is_int(reshape_with_axis)
self.layer = layer
self.time_axis = time_axis
self.reshape_with_axis = reshape_with_axis
self.transpose = Transpose()
self.reshape = Reshape()
def construct(self, inputs):
_check_data(isinstance(inputs, Tensor))
_check_inputs_dim(inputs.shape)
time_axis = self.time_axis % len(inputs.shape)
if self.reshape_with_axis is not None:
reshape_with_axis = self.reshape_with_axis % len(inputs.shape)
inputs_shape = inputs.shape
time_axis_new = len(inputs_shape) - 2 if reshape_with_axis == len(inputs_shape) - 1 \
else (reshape_with_axis + 1 if time_axis > reshape_with_axis else
reshape_with_axis - 1)
reshape_pos = time_axis_new if time_axis_new < reshape_with_axis else reshape_with_axis
perm = _generate_perm(time_axis_new, time_axis, len(inputs_shape))
inputs = self.transpose(inputs, perm)
inputs_shape_new = inputs.shape
inputs = self.reshape(inputs, inputs_shape_new[: reshape_pos] + (-1,) + inputs_shape_new[reshape_pos + 2:])
outputs = self.layer(inputs)
_check_data(isinstance(outputs, Tensor))
_check_reshape_pos(reshape_pos, inputs.shape, outputs.shape)
outputs_shape_new = outputs.shape[:reshape_pos] + inputs_shape_new[reshape_pos: reshape_pos + 2]
if reshape_pos + 1 < len(outputs.shape):
outputs_shape_new += outputs.shape[reshape_pos + 1:]
return self.reshape(outputs, outputs_shape_new)
unstack = Unstack(time_axis)
inputs = unstack(inputs)
y = ()
for item in inputs:
outputs = self.layer(item)
_check_data(isinstance(outputs, Tensor))
_check_expand_dims_axis(time_axis, outputs.ndim)
y += (outputs,)
y = Stack(time_axis)(y)
return y