Document feedback

Question document fragment

When a question document fragment contains a formula, it is displayed as a space.

Submission type
issue

It's a little complicated...

I'd like to ask someone.

Please select the submission type

Problem type
Specifications and Common Mistakes

- Specifications and Common Mistakes:

- Misspellings or punctuation mistakes,incorrect formulas, abnormal display.

- Incorrect links, empty cells, or wrong formats.

- Chinese characters in English context.

- Minor inconsistencies between the UI and descriptions.

- Low writing fluency that does not affect understanding.

- Incorrect version numbers, including software package names and version numbers on the UI.

Usability

- Usability:

- Incorrect or missing key steps.

- Missing main function descriptions, keyword explanation, necessary prerequisites, or precautions.

- Ambiguous descriptions, unclear reference, or contradictory context.

- Unclear logic, such as missing classifications, items, and steps.

Correctness

- Correctness:

- Technical principles, function descriptions, supported platforms, parameter types, or exceptions inconsistent with that of software implementation.

- Incorrect schematic or architecture diagrams.

- Incorrect commands or command parameters.

- Incorrect code.

- Commands inconsistent with the functions.

- Wrong screenshots.

- Sample code running error, or running results inconsistent with the expectation.

Risk Warnings

- Risk Warnings:

- Lack of risk warnings for operations that may damage the system or important data.

Content Compliance

- Content Compliance:

- Contents that may violate applicable laws and regulations or geo-cultural context-sensitive words and expressions.

- Copyright infringement.

Please select the type of question

Problem description

Describe the bug so that we can quickly locate the problem.

mindspore.ops.Conv2DBackpropInput

class mindspore.ops.Conv2DBackpropInput(*args, **kwargs)[source]

Computes the gradients of convolution with respect to the input.

Parameters
  • out_channel (int) – The dimensionality of the output space.

  • kernel_size (Union[int, tuple[int]]) – The size of the convolution window.

  • pad_mode (str) – Modes to fill padding. It could be “valid”, “same”, or “pad”. Default: “valid”.

  • pad (Union[int, tuple[int]]) – The pad value to be filled. Default: 0. If pad is an integer, the paddings of top, bottom, left and right are the same, equal to pad. If pad is a tuple of four integers, the padding of top, bottom, left and right equal to pad[0], pad[1], pad[2], and pad[3] correspondingly.

  • mode (int) – Modes for different convolutions. 0 Math convolutiuon, 1 cross-correlation convolution , 2 deconvolution, 3 depthwise convolution. Default: 1.

  • stride (Union[int. tuple[int]]) – The stride to be applied to the convolution filter. Default: 1.

  • dilation (Union[int. tuple[int]]) – Specifies the dilation rate to be used for the dilated convolution. Default: 1.

  • group (int) – Splits input into groups. Default: 1.

  • data_format (str) – The format of input and output data. It should be ‘NHWC’ or ‘NCHW’, default is ‘NCHW’.

Inputs:
  • dout (Tensor) - the gradients write respect to the output of the convolution. The shape conforms to the default data_format (N,Cout,Hout,Wout).

  • weight (Tensor) - Set size of kernel is (extksw,extksh), where :math:` ext{ks_w}` and :math:` ext{ks_h}` are the height and width of the convolution kernel, then the shape is (Cout,Cin,extksw,extksh).

  • input_size (Tensor) - A tuple describes the shape of the input which conforms to the format (N,Cin,Hin,Win).

Outputs:

Tensor, the gradients with respect to the input of convolution. It has the same shape as the input.

Raises
  • TypeError – If kernel_size, stride, pad or dilation is neither an int nor a tuple.

  • TypeError – If out_channel or group is not an int.

  • ValueError – If kernel_size, stride or dilation is less than 1.

  • ValueError – If pad_mode is not one of ‘same’, ‘valid’, ‘pad’.

  • ValueError – If padding is a tuple whose length is not equal to 4.

  • ValueError – If pad_mode it not equal to ‘pad’ and pad is not equal to (0, 0, 0, 0).

  • ValueError – If data_format is neither ‘NCHW’ not ‘NHWC’.

Supported Platforms:

Ascend GPU CPU

Examples

>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore.common import dtype as mstype
>>> import mindspore.ops.functional as F
>>> import mindspore.ops as ops
>>> dout = Tensor(np.ones([10, 32, 30, 30]), mstype.float32)
>>> weight = Tensor(np.ones([32, 32, 3, 3]), mstype.float32)
>>> input_x = Tensor(np.ones([10, 32, 32, 32]))
>>> conv2d_backprop_input = ops.Conv2DBackpropInput(out_channel=32, kernel_size=3)
>>> output = conv2d_backprop_input(dout, weight, F.shape(input_x))
>>> print(output.shape)
(10, 32, 32, 32)