数据增强

image0image1image2

概述

在计算机视觉任务中,数据量过小或是样本场景单一等问题都会影响模型的训练效果,用户可以通过数据增强操作对图像进行预处理,从而提升模型的泛化性。

MindSpore提供了c_transforms模块和py_transforms模块供用户进行数据增强操作,用户也可以自定义函数或者算子进行数据增强。

模块

实现

说明

c_transforms

基于C++的OpenCV实现

具有较高的性能。

py_transforms

基于Python的PIL实现

该模块提供了多种图像增强功能,并提供了PIL Image和NumPy数组之间的传输方法。

MindSpore目前支持多种常用的数据增强算子,如下表所示,更多数据增强算子参见API文档

模块

算子

说明

c_transforms

RandomCrop

在图像随机位置裁剪指定大小子图像。

RandomHorizontalFlip

按照指定概率对图像进行水平翻转。

Resize

将图像缩放到指定大小。

Invert

将图像进行反相。

py_transforms

RandomCrop

在图像随机位置裁剪指定大小子图像。

Resize

将图像缩放到指定大小。

Invert

将图像进行反相。

Compose

将列表中的数据增强操作依次执行。

c_transforms

下面将简要介绍几种常用的c_transforms模块数据增强算子的使用方法。

RandomCrop

对输入图像进行在随机位置的裁剪。

参数说明:

  • size:裁剪图像的尺寸。

  • padding:填充的像素数量。

  • pad_if_needed:原图小于裁剪尺寸时,是否需要填充。

  • fill_value:在常量填充模式时使用的填充值。

  • padding_mode:填充模式。

下面的样例首先使用顺序采样器加载CIFAR-10数据集[1],然后对已加载的图片进行长宽均为10的随机裁剪,最后输出裁剪前后的图片形状及对应标签,并对图片进行了展示。

下载CIFAR-10数据集并解压到指定路径,执行如下命令:

[1]:
!wget -N https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/cifar-10-binary.tar.gz
!mkdir -p datasets
!tar -xzf cifar-10-binary.tar.gz -C datasets
!mkdir -p datasets/cifar-10-batches-bin/train datasets/cifar-10-batches-bin/test
!mv -f datasets/cifar-10-batches-bin/test_batch.bin datasets/cifar-10-batches-bin/test
!mv -f datasets/cifar-10-batches-bin/data_batch*.bin datasets/cifar-10-batches-bin/batches.meta.txt datasets/cifar-10-batches-bin/train
!tree ./datasets/cifar-10-batches-bin
./datasets/cifar-10-batches-bin
├── readme.html
├── test
│   └── test_batch.bin
└── train
    ├── batches.meta.txt
    ├── data_batch_1.bin
    ├── data_batch_2.bin
    ├── data_batch_3.bin
    ├── data_batch_4.bin
    └── data_batch_5.bin

2 directories, 8 files
[2]:
import matplotlib.pyplot as plt
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as c_trans

ds.config.set_seed(5)
ds.config.set_num_parallel_workers(1)

DATA_DIR = "./datasets/cifar-10-batches-bin/train/"

sampler = ds.SequentialSampler(num_samples=3)
dataset1 = ds.Cifar10Dataset(DATA_DIR, sampler=sampler)

random_crop = c_trans.RandomCrop([10, 10])
dataset2 = dataset1.map(operations=random_crop, input_columns=["image"])

image_list1, label_list1 = [], []
image_list2, label_list2 = [], []
for data1, data2 in zip(dataset1.create_dict_iterator(), dataset2.create_dict_iterator()):
    image_list1.append(data1['image'])
    label_list1.append(data1['label'])
    print("Source image Shape :", data1['image'].shape, ", Source label :", data1['label'])
    image_list2.append(data2['image'])
    label_list2.append(data2['label'])
    print("Cropped image Shape:", data2['image'].shape, ", Cropped label:", data2['label'])
    print("------")

num_samples = len(image_list1) + len(image_list2)
for i in range(num_samples):
    if i < len(image_list1):
        plt.subplot(2, len(image_list1), i + 1)
        plt.imshow(image_list1[i].asnumpy())
        plt.title(label_list1[i].asnumpy())
    else:
        plt.subplot(2, len(image_list2), i + 1)
        plt.imshow(image_list2[i % len(image_list2)].asnumpy())
        plt.title(label_list2[i % len(image_list2)].asnumpy())
plt.show()
Source image Shape : (32, 32, 3) , Source label : 6
Cropped image Shape: (10, 10, 3) , Cropped label: 6
------
Source image Shape : (32, 32, 3) , Source label : 9
Cropped image Shape: (10, 10, 3) , Cropped label: 9
------
Source image Shape : (32, 32, 3) , Source label : 9
Cropped image Shape: (10, 10, 3) , Cropped label: 9
------
_images/augmentation_4_1.svg

RandomHorizontalFlip

对输入图像进行随机水平翻转。

参数说明:

  • prob: 单张图片发生翻转的概率。

下面的样例首先使用随机采样器加载CIFAR-10数据集[1],然后对已加载的图片进行概率为0.8的随机水平翻转,最后输出翻转前后的图片形状及对应标签,并对图片进行了展示。

依照上文步骤下载CIFAR-10数据集并按要求存放。

[3]:
import matplotlib.pyplot as plt
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as c_trans

ds.config.set_seed(6)
ds.config.set_num_parallel_workers(1)

DATA_DIR = "./datasets/cifar-10-batches-bin/train/"

sampler = ds.RandomSampler(num_samples=4)
dataset1 = ds.Cifar10Dataset(DATA_DIR, sampler=sampler)

random_horizontal_flip = c_trans.RandomHorizontalFlip(prob=0.8)
dataset2 = dataset1.map(operations=random_horizontal_flip, input_columns=["image"])

image_list1, label_list1 = [], []
image_list2, label_list2 = [], []
for data1, data2 in zip(dataset1.create_dict_iterator(), dataset2.create_dict_iterator()):
    image_list1.append(data1['image'])
    label_list1.append(data1['label'])
    print("Source image Shape :", data1['image'].shape, ", Source label :", data1['label'])
    image_list2.append(data2['image'])
    label_list2.append(data2['label'])
    print("Flipped image Shape:", data2['image'].shape, ", Flipped label:", data2['label'])
    print("------")

num_samples = len(image_list1) + len(image_list2)
for i in range(num_samples):
    if i < len(image_list1):
        plt.subplot(2, len(image_list1), i + 1)
        plt.imshow(image_list1[i].asnumpy())
        plt.title(label_list1[i].asnumpy())
    else:
        plt.subplot(2, len(image_list2), i + 1)
        plt.imshow(image_list2[i % len(image_list2)].asnumpy())
        plt.title(label_list2[i % len(image_list2)].asnumpy())
plt.show()
Source image Shape : (32, 32, 3) , Source label : 3
Flipped image Shape: (32, 32, 3) , Flipped label: 3
------
Source image Shape : (32, 32, 3) , Source label : 3
Flipped image Shape: (32, 32, 3) , Flipped label: 3
------
Source image Shape : (32, 32, 3) , Source label : 6
Flipped image Shape: (32, 32, 3) , Flipped label: 6
------
Source image Shape : (32, 32, 3) , Source label : 9
Flipped image Shape: (32, 32, 3) , Flipped label: 9
------
_images/augmentation_6_1.svg

Resize

对输入图像进行缩放。

参数说明:

  • size:缩放的目标大小。

  • interpolation:缩放时采用的插值方式。

下面的样例首先加载MNIST数据集[2],然后将已加载的图片缩放至(101, 101)大小,最后输出缩放前后的图片形状及对应标签,并对图片进行了展示。

下载MNIST数据集并解压,存放在./datasets/MNIST_data/路径,执行如下命令:

[4]:
!mkdir -p ./datasets/MNIST_Data/train ./datasets/MNIST_Data/test
!wget -NP ./datasets/MNIST_Data/train https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/mnist/train-labels-idx1-ubyte
!wget -NP ./datasets/MNIST_Data/train https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/mnist/train-images-idx3-ubyte
!wget -NP ./datasets/MNIST_Data/test https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/mnist/t10k-labels-idx1-ubyte
!wget -NP ./datasets/MNIST_Data/test https://mindspore-website.obs.myhuaweicloud.com/notebook/datasets/mnist/t10k-images-idx3-ubyte
!tree ./datasets/MNIST_Data
./datasets/MNIST_Data
├── test
│   ├── t10k-images-idx3-ubyte
│   └── t10k-labels-idx1-ubyte
└── train
    ├── train-images-idx3-ubyte
    └── train-labels-idx1-ubyte

2 directories, 4 files
[5]:
import matplotlib.pyplot as plt
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as c_trans

DATA_DIR = "./datasets/MNIST_Data/train/"

dataset1 = ds.MnistDataset(DATA_DIR, num_samples=4, shuffle=False)

resize = c_trans.Resize(size=[101, 101])
dataset2 = dataset1.map(operations=resize, input_columns=["image"])

image_list1, label_list1 = [], []
image_list2, label_list2 = [], []
for data1, data2 in zip(dataset1.create_dict_iterator(), dataset2.create_dict_iterator()):
    image_list1.append(data1['image'])
    label_list1.append(data1['label'])
    print("Source image Shape :", data1['image'].shape, ", Source label :", data1['label'])
    image_list2.append(data2['image'])
    label_list2.append(data2['label'])
    print("Flipped image Shape:", data2['image'].shape, ", Flipped label:", data2['label'])
    print("------")

num_samples = len(image_list1) + len(image_list2)
for i in range(num_samples):
    if i < len(image_list1):
        plt.subplot(2, len(image_list1), i + 1)
        plt.imshow(image_list1[i].asnumpy().squeeze(), cmap=plt.cm.gray)
        plt.title(label_list1[i].asnumpy())
    else:
        plt.subplot(2, len(image_list2), i + 1)
        plt.imshow(image_list2[i % len(image_list2)].asnumpy().squeeze(), cmap=plt.cm.gray)
        plt.title(label_list2[i % len(image_list2)].asnumpy())
plt.show()
Source image Shape : (28, 28, 1) , Source label : 5
Flipped image Shape: (101, 101, 1) , Flipped label: 5
------
Source image Shape : (28, 28, 1) , Source label : 0
Flipped image Shape: (101, 101, 1) , Flipped label: 0
------
Source image Shape : (28, 28, 1) , Source label : 4
Flipped image Shape: (101, 101, 1) , Flipped label: 4
------
Source image Shape : (28, 28, 1) , Source label : 1
Flipped image Shape: (101, 101, 1) , Flipped label: 1
------
_images/augmentation_9_1.svg

Invert

对输入图像进行反相处理。

下面的样例首先加载CIFAR-10数据集[1],然后同时定义缩放和反相操作并作用于已加载的图片,最后输出缩放与反相前后的图片形状及对应标签,并对图片进行了展示。

依照上文步骤下载CIFAR-10数据集并按要求存放。

[6]:
import matplotlib.pyplot as plt
import mindspore.dataset as ds
import mindspore.dataset.vision.c_transforms as c_trans

ds.config.set_seed(8)

DATA_DIR = "./datasets/cifar-10-batches-bin/train/"

dataset1 = ds.Cifar10Dataset(DATA_DIR, num_samples=4, shuffle=True)

resize = c_trans.Resize(size=[101, 101])
invert = c_trans.Invert()
dataset2 = dataset1.map(operations=[resize, invert], input_columns=["image"])

image_list1, label_list1 = [], []
image_list2, label_list2 = [], []
for data1, data2 in zip(dataset1.create_dict_iterator(), dataset2.create_dict_iterator()):
    image_list1.append(data1['image'])
    label_list1.append(data1['label'])
    print("Source image Shape :", data1['image'].shape, ", Source label :", data1['label'])
    image_list2.append(data2['image'])
    label_list2.append(data2['label'])
    print("Flipped image Shape:", data2['image'].shape, ", Flipped label:", data2['label'])
    print("------")

num_samples = len(image_list1) + len(image_list2)
for i in range(num_samples):
    if i < len(image_list1):
        plt.subplot(2, len(image_list1), i + 1)
        plt.imshow(image_list1[i].asnumpy().squeeze(), cmap=plt.cm.gray)
        plt.title(label_list1[i].asnumpy())
    else:
        plt.subplot(2, len(image_list2), i + 1)
        plt.imshow(image_list2[i % len(image_list2)].asnumpy().squeeze(), cmap=plt.cm.gray)
        plt.title(label_list2[i % len(image_list2)].asnumpy())
plt.show()
Source image Shape : (32, 32, 3) , Source label : 7
Flipped image Shape: (101, 101, 3) , Flipped label: 7
------
Source image Shape : (32, 32, 3) , Source label : 0
Flipped image Shape: (101, 101, 3) , Flipped label: 0
------
Source image Shape : (32, 32, 3) , Source label : 2
Flipped image Shape: (101, 101, 3) , Flipped label: 2
------
Source image Shape : (32, 32, 3) , Source label : 1
Flipped image Shape: (101, 101, 3) , Flipped label: 1
------
_images/augmentation_11_1.svg

py_transforms

下面将简要介绍几种常用的py_transforms模块数据增强算子的使用方法。

Compose

接收一个transforms列表,将列表中的数据增强操作依次作用于数据集图片。

下面的样例首先加载CIFAR-10数据集[1],然后同时定义解码、缩放和数据类型转换操作,并作用于已加载的图片,最后输出处理后的图片形状及对应标签,并对图片进行了展示。

依照上文步骤下载CIFAR-10数据集并按要求存放。

[7]:
import matplotlib.pyplot as plt
import mindspore.dataset as ds
import mindspore.dataset.vision.py_transforms as py_trans
from mindspore.dataset.transforms.py_transforms import Compose
from PIL import Image

ds.config.set_seed(8)

DATA_DIR = "./datasets/cifar-10-batches-bin/train/"

dataset1 = ds.Cifar10Dataset(DATA_DIR, num_samples=5, shuffle=True)

def decode(image):
    return Image.fromarray(image)

transforms_list = [
  decode,
  py_trans.Resize(size=(200,200)),
  py_trans.ToTensor()
]
compose_trans = Compose(transforms_list)
dataset2 = dataset1.map(operations=compose_trans, input_columns=["image"])

image_list, label_list = [], []
for data in dataset2.create_dict_iterator():
    image_list.append(data['image'])
    label_list.append(data['label'])
    print("Transformed image Shape:", data['image'].shape, ", Transformed label:", data['label'])

num_samples = len(image_list)
for i in range(num_samples):
    plt.subplot(1, len(image_list), i + 1)
    plt.imshow(image_list[i].asnumpy().transpose(1, 2, 0))
    plt.title(label_list[i].asnumpy())
plt.show()
Transformed image Shape: (3, 200, 200) , Transformed label: 7
Transformed image Shape: (3, 200, 200) , Transformed label: 0
Transformed image Shape: (3, 200, 200) , Transformed label: 2
Transformed image Shape: (3, 200, 200) , Transformed label: 1
Transformed image Shape: (3, 200, 200) , Transformed label: 6
_images/augmentation_13_1.svg

Eager模式

上述介绍的关于c_transformpy_transform中数据增强算子的用法,都是基于数据管道的方式执行的。基于数据管道方式执行的最大特点是需要定义map算子,由其负责启动、执行给定的数据增强算子,对数据管道的数据进行映射变换。

[8]:
random_crop = c_trans.RandomCrop([10, 10])
dataset = dataset1.map(operations=random_crop, input_columns=["image"])

除此之外,MindSpore还提供了一种“即时执行”的方式调用数据增强算子,称为Eager模式。在算子的Eager模式下,不需要构建数据管道,因此代码编写会更为简洁且能立即执行得到运行结果,推荐在小型数据增强实验、模型推理等轻量化场景中使用。

使用Eager模式,只需要将数据增强算子本身当成可执行函数使用即可,编写如下代码即可以Eager模式执行数据增强算子。

[9]:
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import mindspore.dataset.vision.c_transforms as C
import mindspore.dataset.vision.py_transforms as P

!wget -N https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/banana.jpg
img_ori = Image.open("banana.jpg").convert("RGB")
print("Image.type: {}, Image.shape: {}".format(type(img_ori), img_ori.size))

# Define a Resize op from c_transform and execute it immediately
op1 = C.Resize(size=(320))
img = op1(img_ori)
print("Image.type: {}, Image.shape: {}".format(type(img), img.shape))

# Define a CenterCrop op from c_transform and execute it immediately
op2 = C.CenterCrop((280, 280))
img = op2(img)
print("Image.type: {}, Image.shape: {}".format(type(img), img.shape))

# Define a Pad op from py_transform and execute it immediately
# Before calling Pad, you need to call ToPIL()
op3 = P.ToPIL()
op4 = P.Pad(40)
img = op4(op3(img))
print("Image.type: {}, Image.shape: {}".format(type(img), img.size))

# Show the result
plt.subplot(1, 2, 1)
plt.imshow(img_ori)
plt.title("original image")
plt.subplot(1, 2, 2)
plt.imshow(img)
plt.title("transformed image")
plt.show()
Image.type: <class 'PIL.Image.Image'>, Image.shape: (356, 200)
Image.type: <class 'numpy.ndarray'>, Image.shape: (320, 570, 3)
Image.type: <class 'numpy.ndarray'>, Image.shape: (280, 280, 3)
Image.type: <class 'PIL.Image.Image'>, Image.shape: (360, 360)
_images/augmentation_17_1.svg

MindSpore目前可以支持Eager模式的数据增强算子包括:

使用注意事项

在数据管道处理模式中,请勿混用c_transformspy_transforms,因为两者在管道中运行的方式存在差异,混用会降低处理性能。

(注:Eager模式混用c_transformspy_transforms不受运行方式差异影响)

map

混用会引发C++与Python切换的成本,建议不要过度混用两个模块的算子,但是适量混用是可以接受的。

推荐的使用方式:

  • 单独使用py_transformc_transform

    tranform-c-py1

  • 先使用py_transform,再使用c_transform

    tranform-c-py2

  • 先使用c_transform,再使用py_transform

    tranform-c-py3

不推荐的使用方式:

  • 在两种transform之间频繁切换

    tranform-c-py4

参考文献

[1] Alex Krizhevsky. Learning_Multiple Layers of Features from Tiny Images.

[2] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition.