# MindSpore数据格式转换

[![查看源文件](./_static/logo_source.png)](https://gitee.com/mindspore/docs/blob/r1.1/docs/programming_guide/source_zh_cn/dataset_conversion.md)
  
[![查看notebook](./_static/logo_notebook.png)](https://obs.dualstack.cn-north-4.myhuaweicloud.com/mindspore-website/notebook/r1.1/programming_guide/mindspore_dataset_conversion.ipynb)
  
[![在线运行](./_static/logo_modelarts.png)](https://console.huaweicloud.com/modelarts/?region=cn-north-4#/notebook/loading?share-url-b64=aHR0cHM6Ly9vYnMuZHVhbHN0YWNrLmNuLW5vcnRoLTQubXlodWF3ZWljbG91ZC5jb20vbWluZHNwb3JlLXdlYnNpdGUvbm90ZWJvb2svbW9kZWxhcnRzL3Byb2dyYW1taW5nX2d1aWRlL21pbmRzcG9yZV9kYXRhc2V0X2NvbnZlcnNpb24uaXB5bmI=&image_id=65f636a0-56cf-49df-b941-7d2a07ba8c8c)

## 概述

用户可以将非标准的数据集和常用的数据集转换为MindSpore数据格式,即MindRecord,从而方便地加载到MindSpore中进行训练。同时,MindSpore在部分场景做了性能优化,使用MindRecord可以获得更好的性能。

## 非标准数据集转换MindRecord

下面主要介绍如何将CV类数据和NLP类数据转换为MindRecord,并通过`MindDataset`实现MindRecord文件的读取。

### 转换CV类数据集

本示例主要介绍用户如何将自己的CV类数据集转换成MindRecord,并使用`MindDataset`读取。

本示例首先创建一个包含100条记录的MindRecord文件,其样本包含`file_name`(字符串)、
`label`(整型)、 `data`(二进制)三个字段,然后使用`MindDataset`读取该MindRecord文件。

1. 导入相关模块。

    ```python
    from io import BytesIO
    import os
    import mindspore.dataset as ds
    from mindspore.mindrecord import FileWriter
    import mindspore.dataset.vision.c_transforms as vision
    from PIL import Image
    ```

2. 生成100张图像,并转换成MindRecord。

    ```python
    MINDRECORD_FILE = "test.mindrecord"

    if os.path.exists(MINDRECORD_FILE):
        os.remove(MINDRECORD_FILE)
        os.remove(MINDRECORD_FILE + ".db")

    writer = FileWriter(file_name=MINDRECORD_FILE, shard_num=1)

    cv_schema = {"file_name": {"type": "string"}, "label": {"type": "int32"}, "data": {"type": "bytes"}}
    writer.add_schema(cv_schema, "it is a cv dataset")

    writer.add_index(["file_name", "label"])

    data = []
    for i in range(100):
        i += 1

        sample = {}
        white_io = BytesIO()
        Image.new('RGB', (i*10, i*10), (255, 255, 255)).save(white_io, 'JPEG')
        image_bytes = white_io.getvalue()
        sample['file_name'] = str(i) + ".jpg"
        sample['label'] = i
        sample['data'] = white_io.getvalue()

        data.append(sample)
        if i % 10 == 0:
            writer.write_raw_data(data)
            data = []

    if data:
        writer.write_raw_data(data)

    writer.commit()
    ```

    **参数说明:**
    - `MINDRECORD_FILE`:输出的MindRecord文件路径。

3. 通过`MindDataset`读取MindRecord。

    ```python
    data_set = ds.MindDataset(dataset_file=MINDRECORD_FILE)
    decode_op = vision.Decode()
    data_set = data_set.map(operations=decode_op, input_columns=["data"], num_parallel_workers=2)
    count = 0
    for item in data_set.create_dict_iterator(output_numpy=True):
        count += 1
    print("Got {} samples".format(count))
    ```

### 转换NLP类数据集

本示例主要介绍用户如何将自己的NLP类数据集转换成MindRecord,并使用`MindDataset`读取。为了方便展示,此处略去了将文本转换成字典序的预处理过程。

本示例首先创建一个包含100条记录的MindRecord文件,其样本包含八个字段,均为整型数组,然后使用`MindDataset`读取该MindRecord文件。

1. 导入相关模块。

    ```python
    import os
    import numpy as np
    import mindspore.dataset as ds
    from mindspore.mindrecord import FileWriter
    ```

2. 生成100条文本数据,并转换成MindRecord。

    ```python
    MINDRECORD_FILE = "test.mindrecord"

    if os.path.exists(MINDRECORD_FILE):
        os.remove(MINDRECORD_FILE)
        os.remove(MINDRECORD_FILE + ".db")

    writer = FileWriter(file_name=MINDRECORD_FILE, shard_num=1)

    nlp_schema = {"source_sos_ids": {"type": "int64", "shape": [-1]},
                  "source_sos_mask": {"type": "int64", "shape": [-1]},
                  "source_eos_ids": {"type": "int64", "shape": [-1]},
                  "source_eos_mask": {"type": "int64", "shape": [-1]},
                  "target_sos_ids": {"type": "int64", "shape": [-1]},
                  "target_sos_mask": {"type": "int64", "shape": [-1]},
                  "target_eos_ids": {"type": "int64", "shape": [-1]},
                  "target_eos_mask": {"type": "int64", "shape": [-1]}}
    writer.add_schema(nlp_schema, "it is a preprocessed nlp dataset")

    data = []
    for i in range(100):
        i += 1

        sample = {"source_sos_ids": np.array([i, i + 1, i + 2, i + 3, i + 4], dtype=np.int64),
                  "source_sos_mask": np.array([i * 1, i * 2, i * 3, i * 4, i * 5, i * 6, i * 7], dtype=np.int64),
                  "source_eos_ids": np.array([i + 5, i + 6, i + 7, i + 8, i + 9, i + 10], dtype=np.int64),
                  "source_eos_mask": np.array([19, 20, 21, 22, 23, 24, 25, 26, 27], dtype=np.int64),
                  "target_sos_ids": np.array([28, 29, 30, 31, 32], dtype=np.int64),
                  "target_sos_mask": np.array([33, 34, 35, 36, 37, 38], dtype=np.int64),
                  "target_eos_ids": np.array([39, 40, 41, 42, 43, 44, 45, 46, 47], dtype=np.int64),
                  "target_eos_mask": np.array([48, 49, 50, 51], dtype=np.int64)}

        data.append(sample)
        if i % 10 == 0:
            writer.write_raw_data(data)
            data = []

    if data:
        writer.write_raw_data(data)

    writer.commit()
    ```

    **参数说明:**
    - `MINDRECORD_FILE`:输出的MindRecord文件路径。

3. 通过`MindDataset`读取MindRecord。

    ```python
    data_set = ds.MindDataset(dataset_file=MINDRECORD_FILE)
    count = 0
    for item in data_set.create_dict_iterator():
        count += 1
    print("Got {} samples".format(count))
    ```

## 常用数据集转换MindRecord

MindSpore提供转换常用数据集的工具类,能够将常用的数据集转换为MindRecord。部分常用数据集及其对应的工具类列表如下。

| 数据集 | 格式转换工具类 |
| -------- | ------------ |
| CIFAR-10 | Cifar10ToMR |
| ImageNet | ImageNetToMR |
| TFRecord | TFRecordToMR |
| CSV File | CsvToMR |

更多数据集转换的详细说明可参见[API文档](https://www.mindspore.cn/doc/api_python/zh-CN/r1.1/mindspore/mindspore.mindrecord.html)。

### 转换CIFAR-10数据集

用户可以通过`Cifar10ToMR`类,将CIFAR-10原始数据转换为MindRecord,并使用`MindDataset`读取。

1. 下载[CIFAR-10数据集](https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz)并解压,其目录结构如下所示。

    ```text
    └─cifar-10-batches-py
        ├─batches.meta
        ├─data_batch_1
        ├─data_batch_2
        ├─data_batch_3
        ├─data_batch_4
        ├─data_batch_5
        ├─readme.html
        └─test_batch
    ```

2. 导入相关模块。

    ```python
    import mindspore.dataset as ds
    import mindspore.dataset.vision.c_transforms as vision
    from mindspore.mindrecord import Cifar10ToMR
    ```

3. 创建`Cifar10ToMR`对象,调用`transform`接口,将CIFAR-10数据集转换为MindRecord。

    ```python
    CIFAR10_DIR = "./cifar-10-batches-py"
    MINDRECORD_FILE = "./cifar10.mindrecord"
    cifar10_transformer = Cifar10ToMR(CIFAR10_DIR, MINDRECORD_FILE)
    cifar10_transformer.transform(['label'])
    ```

    **参数说明:**
    - `CIFAR10_DIR`:CIFAR-10数据集路径。
    - `MINDRECORD_FILE`:输出的MindRecord文件路径。

4. 通过`MindDataset`读取MindRecord。

    ```python
    data_set = ds.MindDataset(dataset_file=MINDRECORD_FILE)
    decode_op = vision.Decode()
    data_set = data_set.map(operations=decode_op, input_columns=["data"], num_parallel_workers=2)
    count = 0
    for item in data_set.create_dict_iterator(output_numpy=True):
        count += 1
    print("Got {} samples".format(count))
    ```

### 转换ImageNet数据集

用户可以通过`ImageNetToMR`类,将ImageNet原始数据(图片、标注)转换为MindRecord,并使用`MindDataset`读取。

1. 下载[ImageNet数据集](http://image-net.org/download),将所有图片存放在`images/`文件夹,用一个映射文件`labels_map.txt`记录图片和标签的对应关系。映射文件包含2列,分别为各类别图片目录和标签ID,用空格隔开,映射文件示例如下:

    ```text
    n01440760 0
    n01443537 1
    n01484850 2
    n01491361 3
    n01494475 4
    n01496331 5
    ```

    文件目录结构如下所示:

    ```text
    ├─ labels_map.txt
    └─ images
        └─ ......
    ```

2. 导入相关模块。

    ```python
    import mindspore.dataset as ds
    import mindspore.dataset.vision.c_transforms as vision
    from mindspore.mindrecord import ImageNetToMR
    ```

3. 创建`ImageNetToMR`对象,调用`transform`接口,将数据集转换为MindRecord。

    ```python
    IMAGENET_MAP_FILE = "./labels_map.txt"
    IMAGENET_IMAGE_DIR = "./images/"
    MINDRECORD_FILE = "./imagenet.mindrecord"
    imagenet_transformer = ImageNetToMR(IMAGENET_MAP_FILE, IMAGENET_IMAGE_DIR, MINDRECORD_FILE, partition_number=1)
    imagenet_transformer.transform()
    ```

    **参数说明:**
    - `IMAGENET_MAP_FILE`:ImageNet数据集标签映射文件的路径。  
    - `IMAGENET_IMAGE_DIR`:包含ImageNet所有图片的文件夹路径。  
    - `MINDRECORD_FILE`:输出的MindRecord文件路径。

4. 通过`MindDataset`读取MindRecord。

    ```python
    data_set = ds.MindDataset(dataset_file=MINDRECORD_FILE)
    decode_op = vision.Decode()
    data_set = data_set.map(operations=decode_op, input_columns=["image"], num_parallel_workers=2)
    count = 0
    for item in data_set.create_dict_iterator(output_numpy=True):
        count += 1
    print("Got {} samples".format(count))
    ```

### 转换CSV数据集

本示例首先创建一个包含5条记录的CSV文件,然后通过`CsvToMR`工具类将CSV文件转换为MindRecord,并最终通过`MindDataset`将其读取出来。

1. 导入相关模块。

    ```python
    import csv
    import os
    import mindspore.dataset as ds
    from mindspore.mindrecord import CsvToMR
    ```

2. 生成CSV文件,并转换成MindRecord。

    ```python
    CSV_FILE = "test.csv"
    MINDRECORD_FILE = "test.mindrecord"

    def generate_csv():
        headers = ["id", "name", "math", "english"]
        rows = [(1, "Lily", 78.5, 90),
                (2, "Lucy", 99, 85.2),
                (3, "Mike", 65, 71),
                (4, "Tom", 95, 99),
                (5, "Jeff", 85, 78.5)]
        with open(CSV_FILE, 'w', encoding='utf-8') as f:
            writer = csv.writer(f)
            writer.writerow(headers)
            writer.writerows(rows)

    generate_csv()

    if os.path.exists(MINDRECORD_FILE):
        os.remove(MINDRECORD_FILE)
        os.remove(MINDRECORD_FILE + ".db")

    csv_transformer = CsvToMR(CSV_FILE, MINDRECORD_FILE, partition_number=1)

    csv_transformer.transform()

    assert os.path.exists(MINDRECORD_FILE)
    assert os.path.exists(MINDRECORD_FILE + ".db")
    ```

    **参数说明:**
    - `CSV_FILE`:CSV文件的路径。
    - `MINDRECORD_FILE`:输出的MindRecord文件路径。

3. 通过`MindDataset`读取MindRecord。

    ```python
    data_set = ds.MindDataset(dataset_file=MINDRECORD_FILE)
    count = 0
    for item in data_set.create_dict_iterator(output_numpy=True):
        count += 1
    print("Got {} samples".format(count))
    ```

### 转换TFRecord数据集

> 目前支持TensorFlow 1.13.0-rc1及以上版本。

本示例首先通过TensorFlow创建一个TFRecord文件,然后通过`TFRecordToMR`工具类将TFRecord文件转换为MindRecord,最后通过`MindDataset`将其读取出来,并使用`Decode`算子对`image_bytes`字段进行解码。

1. 导入相关模块。

    ```python
    import collections
    from io import BytesIO
    import os
    import mindspore.dataset as ds
    from mindspore.mindrecord import TFRecordToMR
    import mindspore.dataset.vision.c_transforms as vision
    from PIL import Image
    import tensorflow as tf
    ```

2. 生成TFRecord文件。

    ```python
    TFRECORD_FILE = "test.tfrecord"
    MINDRECORD_FILE = "test.mindrecord"

    def generate_tfrecord():
        def create_int_feature(values):
            if isinstance(values, list):
                feature = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
            else:
                feature = tf.train.Feature(int64_list=tf.train.Int64List(value=[values]))
            return feature

        def create_float_feature(values):
            if isinstance(values, list):
                feature = tf.train.Feature(float_list=tf.train.FloatList(value=list(values)))
            else:
                feature = tf.train.Feature(float_list=tf.train.FloatList(value=[values]))
            return feature

        def create_bytes_feature(values):
            if isinstance(values, bytes):
                white_io = BytesIO()
                Image.new('RGB', (10, 10), (255, 255, 255)).save(white_io, 'JPEG')
                image_bytes = white_io.getvalue()
                feature = tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_bytes]))
            else:
                feature = tf.train.Feature(bytes_list=tf.train.BytesList(value=[bytes(values, encoding='utf-8')]))
            return feature

        writer = tf.io.TFRecordWriter(TFRECORD_FILE)

        example_count = 0
        for i in range(10):
            file_name = "000" + str(i) + ".jpg"
            image_bytes = bytes(str("aaaabbbbcccc" + str(i)), encoding="utf-8")
            int64_scalar = i
            float_scalar = float(i)
            int64_list = [i, i+1, i+2, i+3, i+4, i+1234567890]
            float_list = [float(i), float(i+1), float(i+2.8), float(i+3.2),
                        float(i+4.4), float(i+123456.9), float(i+98765432.1)]

            features = collections.OrderedDict()
            features["file_name"] = create_bytes_feature(file_name)
            features["image_bytes"] = create_bytes_feature(image_bytes)
            features["int64_scalar"] = create_int_feature(int64_scalar)
            features["float_scalar"] = create_float_feature(float_scalar)
            features["int64_list"] = create_int_feature(int64_list)
            features["float_list"] = create_float_feature(float_list)

            tf_example = tf.train.Example(features=tf.train.Features(feature=features))
            writer.write(tf_example.SerializeToString())
            example_count += 1
        writer.close()
        print("Write {} rows in tfrecord.".format(example_count))

    generate_tfrecord()
    ```

    **参数说明:**
    - `TFRECORD_FILE`:TFRecord文件的路径。
    - `MINDRECORD_FILE`:输出的MindRecord文件路径。

3. 将TFRecord转换成MindRecord。

    ```python
    feature_dict = {"file_name": tf.io.FixedLenFeature([], tf.string),
                    "image_bytes": tf.io.FixedLenFeature([], tf.string),
                    "int64_scalar": tf.io.FixedLenFeature([], tf.int64),
                    "float_scalar": tf.io.FixedLenFeature([], tf.float32),
                    "int64_list": tf.io.FixedLenFeature([6], tf.int64),
                    "float_list": tf.io.FixedLenFeature([7], tf.float32),
                    }

    if os.path.exists(MINDRECORD_FILE):
        os.remove(MINDRECORD_FILE)
        os.remove(MINDRECORD_FILE + ".db")

    tfrecord_transformer = TFRecordToMR(TFRECORD_FILE, MINDRECORD_FILE, feature_dict, ["image_bytes"])
    tfrecord_transformer.transform()

    assert os.path.exists(MINDRECORD_FILE)
    assert os.path.exists(MINDRECORD_FILE + ".db")
    ```

4. 通过`MindDataset`读取MindRecord。

    ```python
    data_set = ds.MindDataset(dataset_file=MINDRECORD_FILE)
    decode_op = vision.Decode()
    data_set = data_set.map(operations=decode_op, input_columns=["image_bytes"], num_parallel_workers=2)
    count = 0
    for item in data_set.create_dict_iterator(output_numpy=True):
        count += 1
    print("Got {} samples".format(count))
    ```