MindSpore Distributed Operator List

Linux Ascend GPU CPU Model Development Beginner Intermediate Expert

View Source On Gitee

Distributed Operator

op name

constraints

mindspore.ops.ACos

None

mindspore.ops.Cos

None

mindspore.ops.LogicalNot

None

mindspore.ops.Log

None

mindspore.ops.Exp

None

mindspore.ops.LogSoftmax

The logits can’t be split into the dimension of axis, otherwise it’s inconsistent with the single machine in the mathematical logic.

mindspore.ops.Softmax

The logits can’t be split into the dimension of axis, otherwise it’s inconsistent with the single machine in the mathematical logic.

mindspore.ops.Tanh

None

mindspore.ops.Gelu

None

mindspore.ops.ReLU

None

mindspore.ops.Sqrt

None

mindspore.ops.Cast

None

mindspore.ops.Neg

None

mindspore.ops.ExpandDims

None

mindspore.ops.Squeeze

None

mindspore.ops.Square

None

mindspore.ops.Sigmoid

None

mindspore.ops.Dropout

Repeated calculation is not supported.

mindspore.ops.Div

None

mindspore.ops.TensorAdd

None

mindspore.ops.RealDiv

None

mindspore.ops.Mul

None

mindspore.ops.Sub

None

mindspore.ops.Pow

None

mindspore.ops.FloorDiv

None

mindspore.ops.Greater

None

mindspore.ops.AssignSub

None

mindspore.ops.SigmoidCrossEntropyWithLogits

None

mindspore.ops.Equal

None

mindspore.ops.NotEqual

None

mindspore.ops.Maximum

None

mindspore.ops.Minimum

None

mindspore.ops.BiasAdd

None

mindspore.ops.Concat

The input_x can’t be split into the dimension of axis, otherwise it’s inconsistent with the single machine in the mathematical logic.

mindspore.ops.DropoutGenMask

Need to be used in conjunction with DropoutDoMask.

mindspore.ops.DropoutDoMask

Need to be used in conjunction with DropoutGenMask,configuring shard strategy is not supported.

mindspore.ops.GatherV2

Only support 1-dim and 2-dim parameters and the last dimension of the input_params should be 32-byte aligned; Scalar input_indices is not supported; Repeated calculation is not supported when the parameters are split in the dimension of the axis; Split input_indices and input_params at the same time is not supported.

mindspore.ops.SparseGatherV2

The same as GatherV2.

mindspore.ops.EmbeddingLookup

The same as GatherV2.

mindspore.ops.L2Normalize

The input_x can’t be split into the dimension of axis, otherwise it’s inconsistent with the single machine in the mathematical logic.

mindspore.ops.SoftmaxCrossEntropyWithLogits

The last dimension of logits and labels can’t be splited; Only supports using output[0].

mindspore.ops.MatMul

transpose_a=True is not supported.

mindspore.ops.BatchMatMul

transpore_a=True is not supported.

mindspore.ops.PReLU

When the shape of weight is not [1], the shard strategy in channel dimension of input_x should be consistent with weight.

mindspore.ops.OneHot

Only support 1-dim indices. Must configure strategy for the output and the first and second inputs.

mindspore.ops.ReduceSum

None

mindspore.ops.ReduceMax

When the input_x is splited on the axis dimension, the distributed result may be inconsistent with that on the single machine.

mindspore.ops.ReduceMin

When the input_x is splited on the axis dimension, the distributed result may be inconsistent with that on the single machine.

mindspore.ops.ArgMinWithValue

When the input_x is splited on the axis dimension, the distributed result may be inconsistent with that on the single machine.

mindspore.ops.ArgMaxWithValue

When the input_x is splited on the axis dimension, the distributed result may be inconsistent with that on the single machine.

mindspore.ops.ReduceMean

None

mindspore.ops.Reshape

Configuring shard strategy is not supported.

mindspore.ops.StridedSlice

Only support mask with all 0 values; The dimension needs to be split should be all extracted; Split is not supported when the strides of dimension is 1.

mindspore.ops.Tile

Only support configuring shard strategy for multiples.

mindspore.ops.Transpose

None

Repeated calculation means that the device is not fully used. For example, the cluster has 8 devices to run distributed training, the splitting strategy only cuts the input into 4 copies. In this case, double counting will occur.