mindspore.ops.Unique
- class mindspore.ops.Unique(*args, **kwargs)[source]
Returns the unique elements of input tensor and also return a tensor containing the index of each value of input tensor corresponding to the output unique tensor.
The shape of Tensor y and Tensor idx is different in most cases, because Tensor y will be deduplicated, and the shape of Tensor idx is consistent with the input.
To get the same shape between idx and y, please ref to ‘UniqueWithPad’ operator
- Inputs:
x (Tensor) - The input tensor.
- Outputs:
Tuple, containing Tensor objects (y, idx), `y is a tensor with the same type as x, and contains the unique elements in x, sorted in ascending order. idx is a tensor containing indices of elements in the input corresponding to the output tensor.
- Raises
TypeError – If x is not a Tensor.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> x = Tensor(np.array([1, 2, 5, 2]), mindspore.int32) >>> output = ops.Unique()(x) >>> print(output) (Tensor(shape=[3], dtype=Int32, value= [1, 2, 5]), Tensor(shape=[4], dtype=Int32, value= [0, 1, 2, 1])) >>> >>> # note that for GPU, this operator must be wrapped inside a model, and executed in graph mode. >>> class UniqueNet(nn.Cell): ... def __init__(self): ... super(UniqueNet, self).__init__() ... self.unique_op = ops.Unique() ... ... def construct(self, x): ... output, indices = self.unique_op(x) ... return output, indices ... >>> x = Tensor(np.array([1, 2, 5, 2]), mindspore.int32) >>> net = UniqueNet() >>> output = net(x) >>> print(output) (Tensor(shape=[3], dtype=Int32, value= [1, 2, 5]), Tensor(shape=[4], dtype=Int32, value= [0, 1, 2, 1]))