文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.DepthwiseConv2dNative

class mindspore.ops.DepthwiseConv2dNative(*args, **kwargs)[source]

Returns the depth-wise convolution value for the input.

Applies depthwise conv2d for the input, which will generate more channels with channel_multiplier. Given an input tensor of shape (N,Cin,Hin,Win) where N is the batch size and a filter tensor with kernel size (ksh,ksw), containing Cinchannel_multiplier convolutional filters of depth 1; it applies different filters to each input channel (channel_multiplier channels for each input channel has the default value 1), then concatenates the results together. The output has in_channelschannel_multiplier channels.

Parameters
  • channel_multiplier (int) – The multiplier for the original output convolution. Its value must be greater than 0.

  • kernel_size (Union[int, tuple[int]]) – The size of the convolution kernel.

  • mode (int) – Modes for different convolutions. 0 Math convolution, 1 cross-correlation convolution , 2 deconvolution, 3 depthwise convolution. Default: 3.

  • pad_mode (str) – Modes to fill padding. It could be “valid”, “same”, or “pad”. Default: “valid”.

  • pad (Union[int, tuple[int]]) – The pad value to be filled. If pad is an integer, the paddings of top, bottom, left and right are the same, equal to pad. If pad is a tuple of four integers, the padding of top, bottom, left and right equal to pad[0], pad[1], pad[2], and pad[3] correspondingly. Default: 0.

  • stride (Union[int, tuple[int]]) – The stride to be applied to the convolution filter. Default: 1.

  • dilation (Union[int, tuple[int]]) – Specifies the dilation rate to be used for the dilated convolution. Default: 1.

  • group (int) – Splits input into groups. Default: 1.

Inputs:
  • input (Tensor) - Tensor of shape (N,Cin,Hin,Win).

  • weight (Tensor) - Set the size of kernel as (K1,K2), then the shape is (K,Cin,K1,K2), K must be 1.

Outputs:

Tensor of shape (N,Cinchannel_multiplier,Hout,Wout).

Raises
  • TypeError – If kernel_size, stride, pad or dilation is neither an int nor a tuple.

  • TypeError – If channel_multiplier or group is not an int.

  • ValueError – If stride or dilation is less than 1.

  • ValueError – If pad_mode is not one of the following:’same’, ‘valid’ or ‘pad’.

  • ValueError – If pad_mode it not equal to ‘pad’ and pad is not equal to (0, 0, 0, 0).

Supported Platforms:

Ascend

Examples

>>> input_tensor = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32)
>>> weight = Tensor(np.ones([1, 32, 3, 3]), mindspore.float32)
>>> depthwise_conv2d = ops.DepthwiseConv2dNative(channel_multiplier=3, kernel_size=(3, 3))
>>> output = depthwise_conv2d(input_tensor, weight)
>>> print(output.shape)
(10, 96, 30, 30)