mindspore.ops.BatchMatMul
- class mindspore.ops.BatchMatMul(*args, **kwargs)[source]
Computes matrix multiplication between two tensors by batch.
\[\text{output}[..., :, :] = \text{matrix}(a[..., :, :]) * \text{matrix}(b[..., :, :])\]The two input tensors must have the same rank and the rank must be not less than 3.
- Parameters
- Inputs:
input_x (Tensor) - The first tensor to be multiplied. The shape of the tensor is \((*B, N, C)\), where \(*B\) represents the batch size which can be multidimensional, \(N\) and \(C\) are the size of the last two dimensions. If transpose_a is True, its shape must be \((*B, C, N)\).
input_y (Tensor) - The second tensor to be multiplied. The shape of the tensor is \((*B, C, M)\). If transpose_b is True, its shape must be \((*B, M, C)\).
- Outputs:
Tensor, the shape of the output tensor is \((*B, N, M)\).
- Raises
TypeError – If transpose_a or transpose_b is not a bool.
ValueError – If length of shape of input_x is not equal to length of shape of input_y or length of shape of input_x is less than 3.
- Supported Platforms:
Ascend
GPU
CPU
Examples
>>> input_x = Tensor(np.ones(shape=[2, 4, 1, 3]), mindspore.float32) >>> input_y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32) >>> batmatmul = ops.BatchMatMul() >>> output = batmatmul(input_x, input_y) >>> print(output) [[[[3. 3. 3. 3.]] [[3. 3. 3. 3.]] [[3. 3. 3. 3.]] [[3. 3. 3. 3.]]] [[[3. 3. 3. 3.]] [[3. 3. 3. 3.]] [[3. 3. 3. 3.]] [[3. 3. 3. 3.]]]] >>> input_x = Tensor(np.ones(shape=[2, 4, 3, 1]), mindspore.float32) >>> input_y = Tensor(np.ones(shape=[2, 4, 3, 4]), mindspore.float32) >>> batmatmul = ops.BatchMatMul(transpose_a=True) >>> output = batmatmul(input_x, input_y) >>> print(output) [[[[3. 3. 3. 3.]] [[3. 3. 3. 3.]] [[3. 3. 3. 3.]] [[3. 3. 3. 3.]]] [[[3. 3. 3. 3.]] [[3. 3. 3. 3.]] [[3. 3. 3. 3.]] [[3. 3. 3. 3.]]]]