文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.ops.ApplyRMSProp

class mindspore.ops.ApplyRMSProp(*args, **kwargs)[source]

Optimizer that implements the Root Mean Square prop(RMSProp) algorithm. Please refer to the usage in source code of nn.RMSProp.

The updating formulas of ApplyRMSProp algorithm are as follows,

st=ρst1+(1ρ)(Qi(w))2mt=βmt1+ηst+ϵQi(w)w=wmt

where w represents var, which will be updated. st represents mean_square, st1 is the last momentent of st, mt represents moment, mt1 is the last momentent of mt. rho represents decay. beta is the momentum term, represents momentum. epsilon is a smoothing term to avoid division by zero, represents epsilon. eta represents learning_rate. nablaQi(w) represents grad.

Parameters

use_locking (bool) – Whether to enable a lock to protect the variable and accumlation tensors from being updated. Default: False.

Inputs:
  • var (Tensor) - Weights to be update.

  • mean_square (Tensor) - Mean square gradients, must have the same type as var.

  • moment (Tensor) - Delta of var, must have the same type as var.

  • learning_rate (Union[Number, Tensor]) - Learning rate. Must be a float number or a scalar tensor with float16 or float32 data type.

  • grad (Tensor) - Gradient, must have the same type as var.

  • decay (float) - Decay rate. Only constant value is allowed.

  • momentum (float) - Momentum. Only constant value is allowed.

  • epsilon (float) - Ridge term. Only constant value is allowed.

Outputs:

Tensor, parameters to be update.

Raises
  • TypeError – If use_locking is not a bool.

  • TypeError – If var, `mean_square, moment or decay is not a Tensor.

  • TypeError – If learning_rate is neither a Number nor a Tensor.

  • TypeError – If dtype of decay, momentum or epsilon is not float.

  • TypeError – If dtype of learning_rate is neither float16 nor float32.

  • ValueError – If decay, momentum or epsilon is not a constant value.

Supported Platforms:

Ascend GPU CPU

Examples

>>> apply_rms = ops.ApplyRMSProp()
>>> input_x = Tensor(1., mindspore.float32)
>>> mean_square = Tensor(2., mindspore.float32)
>>> moment = Tensor(1., mindspore.float32)
>>> grad = Tensor(2., mindspore.float32)
>>> learning_rate = Tensor(0.9, mindspore.float32)
>>> decay = 0.0
>>> momentum = 1e-10
>>> epsilon = 0.001
>>> output = apply_rms(input_x, mean_square, moment, learning_rate, grad, decay, momentum, epsilon)
>>> output
Tensor(shape=[], dtype=Float32, value= 0.100112)