mindspore.nn.probability.toolbox.UncertaintyEvaluation
- class mindspore.nn.probability.toolbox.UncertaintyEvaluation(model, train_dataset, task_type, num_classes=None, epochs=1, epi_uncer_model_path=None, ale_uncer_model_path=None, save_model=False)[source]
Toolbox for Uncertainty Evaluation.
- Parameters
model (Cell) – The model for uncertainty evaluation.
train_dataset (Dataset) – A dataset iterator to train model.
task_type (str) – Option for the task types of model - regression: A regression model. - classification: A classification model.
num_classes (int) – The number of labels of classification. If the task type is classification, it must be set; otherwise, it is not needed. Default: None.
epochs (int) – Total number of iterations on the data. Default: 1.
epi_uncer_model_path (str) – The save or read path of the epistemic uncertainty model. Default: None.
ale_uncer_model_path (str) – The save or read path of the aleatoric uncertainty model. Default: None.
save_model (bool) – Whether to save the uncertainty model or not, if true, the epi_uncer_model_path and ale_uncer_model_path must not be None. If false, the model to evaluate will be loaded from the the path of the uncertainty model; if the path is not given , it will not save or load the uncertainty model. Default: False.
- Supported Platforms:
Ascend
GPU
Examples
>>> network = LeNet() >>> param_dict = load_checkpoint('checkpoint_lenet.ckpt') >>> load_param_into_net(network, param_dict) >>> ds_train = create_dataset('workspace/mnist/train') >>> ds_eval = create_dataset('workspace/mnist/test') >>> evaluation = UncertaintyEvaluation(model=network, ... train_dataset=ds_train, ... task_type='classification', ... num_classes=10, ... epochs=1, ... epi_uncer_model_path=None, ... ale_uncer_model_path=None, ... save_model=False) >>> for eval_data in ds_eval.create_dict_iterator(output_numpy=True, num_epochs=1): ... eval_data = Tensor(eval_data['image'], mstype.float32) ... epistemic_uncertainty = evaluation.eval_epistemic_uncertainty(eval_data) ... aleatoric_uncertainty = evaluation.eval_aleatoric_uncertainty(eval_data) >>> output = epistemic_uncertainty.shape >>> print(output) (32, 10) >>> output = aleatoric_uncertainty.shape >>> print(output) (32,)
- eval_aleatoric_uncertainty(eval_data)[source]
Evaluate the aleatoric uncertainty of inference results, which also called data uncertainty.
- Parameters
eval_data (Tensor) – The data samples to be evaluated, the shape must be (N,C,H,W).
- Returns
numpy.dtype, the aleatoric uncertainty of inference results of data samples.
- eval_epistemic_uncertainty(eval_data)[source]
Evaluate the epistemic uncertainty of inference results, which also called model uncertainty.
- Parameters
eval_data (Tensor) – The data samples to be evaluated, the shape must be (N,C,H,W).
- Returns
numpy.dtype, the epistemic uncertainty of inference results of data samples.