文档反馈

问题文档片段

问题文档片段包含公式时,显示为空格。

提交类型
issue

有点复杂...

找人问问吧。

请选择提交类型

问题类型
规范和低错类

- 规范和低错类:

- 错别字或拼写错误,标点符号使用错误、公式错误或显示异常。

- 链接错误、空单元格、格式错误。

- 英文中包含中文字符。

- 界面和描述不一致,但不影响操作。

- 表述不通顺,但不影响理解。

- 版本号不匹配:如软件包名称、界面版本号。

易用性

- 易用性:

- 关键步骤错误或缺失,无法指导用户完成任务。

- 缺少主要功能描述、关键词解释、必要前提条件、注意事项等。

- 描述内容存在歧义指代不明、上下文矛盾。

- 逻辑不清晰,该分类、分项、分步骤的没有给出。

正确性

- 正确性:

- 技术原理、功能、支持平台、参数类型、异常报错等描述和软件实现不一致。

- 原理图、架构图等存在错误。

- 命令、命令参数等错误。

- 代码片段错误。

- 命令无法完成对应功能。

- 界面错误,无法指导操作。

- 代码样例运行报错、运行结果不符。

风险提示

- 风险提示:

- 对重要数据或系统存在风险的操作,缺少安全提示。

内容合规

- 内容合规:

- 违反法律法规,涉及政治、领土主权等敏感词。

- 内容侵权。

请选择问题类型

问题描述

点击输入详细问题描述,以帮助我们快速定位问题。

mindspore.nn.FocalLoss

class mindspore.nn.FocalLoss(weight=None, gamma=2.0, reduction='mean')[source]

The loss function proposed by Kaiming team in their paper Focal Loss for Dense Object Detection improves the effect of image object detection. It is a loss function to solve the imbalance of categories and the difference of classification difficulty. If you want to learn more, please refer to the paper. https://arxiv.org/pdf/1708.02002.pdf. The function is shown as follows:

FL(pt)=(1pt)γlog(pt)
Parameters
  • gamma (float) – Gamma is used to adjust the steepness of weight curve in focal loss. Default: 2.0.

  • weight (Union[Tensor, None]) – A rescaling weight applied to the loss of each batch element. The dimension of weight should be 1. If None, no weights are applied. Default: None.

  • reduction (str) – Type of reduction to be applied to loss. The optional values are “mean”, “sum”, and “none”. If “none”, do not perform reduction. Default: “mean”.

Inputs:
  • logits (Tensor) - Tensor of shape should be (B, C) or (B, C, H) or (B, C, H, W). Where C is the number of classes. Its value is greater than 1. If the shape is (B, C, H, W) or (B, C, H), the H or product of H and W should be the same as labels.

  • labels (Tensor) - Tensor of shape should be (B, C) or (B, C, H) or (B, C, H, W). The value of C is 1 or it needs to be the same as predict’s C. If C is not 1, the shape of target should be the same as that of predict, where C is the number of classes. If the shape is (B, C, H, W) or (B, C, H), the H or product of H and W should be the same as logits.

Outputs:

Tensor, it’s a tensor with the same shape and type as input logits.

Raises
  • TypeError – If the data type of gamma is not float..

  • TypeError – If weight is not a Tensor.

  • ValueError – If labels dim different from logits.

  • ValueError – If labels channel is not 1 and labels shape is different from logits.

  • ValueError – If reduction is not one of ‘none’, ‘mean’, ‘sum’.

Supported Platforms:

Ascend GPU

Example

>>> logits = Tensor([[0.8, 1.4], [0.5, 0.9], [1.2, 0.9]], mstype.float32)
>>> labels = Tensor([[1], [1], [0]], mstype.int32)
>>> focalloss = nn.FocalLoss(weight=Tensor([1, 2]), gamma=2.0, reduction='mean')
>>> output = focalloss(logits, labels)
>>> print(output)
0.12516622