# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Dataset help for minddata dataset"""
import math
import os
from mindspore._checkparam import Validator
from mindspore.common.dtype import pytype_to_dtype
from .. import context, nn
from ._utils import _exec_datagraph, _get_types_and_shapes, _construct_tensor_list
from ..parallel._utils import _get_device_num, _get_global_rank, _need_to_full, _to_full_shapes
from ..ops import operations as P
def _send_data(dataset, epoch_num):
"""Engine dataset to write data to tdt queue."""
if not hasattr(dataset, '__has_sent__'):
exec_dataset = dataset.__transfer_dataset__
exec_dataset.send(epoch_num)
dataset.__has_sent__ = True
def _send_data_no_flag(dataset, epoch_num):
"""Engine dataset to write data to tdt queue directly."""
exec_dataset = dataset.__transfer_dataset__
exec_dataset.send(epoch_num)
def _dynamic_sink_scenario(dataset, dataset_iter):
"""Special scenario with dynamic shape and sink_size=1."""
flag = False
ms_role = os.getenv("MS_ROLE")
if hasattr(dataset_iter, "sink_size") and \
dataset_iter.sink_size == 1 and \
dataset.get_dataset_size() != 1 and \
hasattr(dataset_iter, "sink_count") and \
dataset_iter.sink_count == 1 and \
context.get_context("device_target") == "Ascend" and \
context.get_context("mode") == context.GRAPH_MODE and \
ms_role != "MS_WORKER":
flag = True
return flag
class _DataWrapper(nn.Cell):
"""
Wraps the input network with a dataset which automatically fetches data with 'GetNext' function from the
dataset channel 'queue_name' and performs the forward computation.
"""
def __init__(self, network, dataset_types, dataset_shapes, queue_name):
super(_DataWrapper, self).__init__(auto_prefix=False, flags=network.get_flags())
# Also copy the flag in `network` construct
flags = getattr(network.__class__.construct, "_mindspore_flags", {})
self.info = (dataset_types, dataset_shapes)
self.add_flags(**flags)
self.get_next = P.GetNext(dataset_types, dataset_shapes, len(dataset_types), queue_name)
self.network = network
def construct(self):
outputs = self.get_next()
return self.network(*outputs)
def _generate_dataset_sink_mode_net(network, dataset_shapes, dataset_types, queue_name):
if not isinstance(network, _DataWrapper):
network = _DataWrapper(network, dataset_types, dataset_shapes, queue_name)
return network
[docs]def connect_network_with_dataset(network, dataset_helper):
"""
Connect the `network` with dataset in `dataset_helper`.
This function wraps the input network with 'GetNext' so that the data can be fetched automatically from the
data channel corresponding to the 'queue_name' and passed to the input network during forward computation.
Note:
In the case of running the network on Ascend/GPU in graph mode, this function will wrap the input network with
'GetNext', in other cases, the input network will be returned with no change.
The 'GetNext' is required to get data only in sink mode, so this function is not applicable to no-sink mode.
Args:
network (Cell): The training network for dataset.
dataset_helper (DatasetHelper): A class to process the MindData dataset, it provides the type, shape and queue
name of the dataset to wrap the `GetNext`.
Returns:
Cell, a new network wrapped with 'GetNext' in the case of running the task on Ascend in graph mode, otherwise
it is the input network.
Supported Platforms:
``Ascend`` ``GPU``
Examples:
>>> from mindspore import DatasetHelper
>>>
>>> # call create_dataset function to create a regular dataset, refer to mindspore.dataset
>>> train_dataset = create_custom_dataset()
>>> dataset_helper = DatasetHelper(train_dataset, dataset_sink_mode=True)
>>> net = Net()
>>> net_with_get_next = connect_network_with_dataset(net, dataset_helper)
"""
dataset_iter = dataset_helper.iter
dataset = dataset_iter.dataset
if isinstance(dataset_iter, _DatasetIterNormal):
raise RuntimeError("Dataset should be connected with network only in sink mode.")
ms_role = os.getenv("MS_ROLE")
if ms_role in ("MS_PSERVER", "MS_SCHED"):
return network
queue_name = dataset.__transfer_dataset__.queue_name
if _dynamic_sink_scenario(dataset, dataset_iter):
if not hasattr(dataset_iter, '__network__'):
dataset_iter.__network__ = network
network = dataset_iter.__network__
dataset_types, dataset_shapes = dataset_helper.get_data_info()
dataset_types = [pytype_to_dtype(x) for x in dataset_types]
key = str(dataset_types) + str(dataset_shapes)
if hasattr(dataset_iter, '__network_manage__') and key in dataset_iter.__network_manage__:
network = dataset_iter.__network_manage__[key]
else:
if _need_to_full():
device_num = _get_device_num()
dataset_shapes = _to_full_shapes(dataset_shapes, device_num)
network = _generate_dataset_sink_mode_net(network, dataset_shapes, dataset_types, queue_name)
dataset_iter.__network_manage__ = dataset_iter.__network_manage__ if hasattr(
dataset_iter, '__network_manage__') else dict()
dataset_iter.__network_manage__[key] = network
return network
if not hasattr(dataset, '__me_inited__') and \
not context.get_context("enable_ge") and \
context.get_context("device_target") in ("Ascend", "GPU"):
dataset.__me_inited__ = True
dataset_types, dataset_shapes = dataset_helper.types_shapes()
network = _generate_dataset_sink_mode_net(network, dataset_shapes, dataset_types, queue_name)
return network
[docs]class DatasetHelper:
"""
DatasetHelper is a class to process the MindData dataset and it provides the information of dataset.
According to different contexts, change the iterations of dataset and use the same iteration for loop in different
contexts.
Note:
The iteration of DatasetHelper will provide one epoch data.
Args:
dataset (Dataset): The training dataset iterator.
dataset_sink_mode (bool): If true use GetNext to fetch the data, or else feed the data
from host. Default: True.
sink_size (int): Control the amount of data in each sink.
If sink_size=-1, sink the complete dataset for each epoch.
If sink_size>0, sink sink_size data for each epoch.
Default: -1.
epoch_num (int): Control the number of epoch data to send. Default: 1.
Examples:
>>> from mindspore import nn, DatasetHelper
>>>
>>> network = Net()
>>> net_loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
>>> network = nn.WithLossCell(network, net_loss)
>>> train_dataset = create_custom_dataset()
>>> dataset_helper = DatasetHelper(train_dataset, dataset_sink_mode=False)
>>> for next_element in dataset_helper:
... outputs = network(*next_element)
"""
def __init__(self, dataset, dataset_sink_mode=True, sink_size=-1, epoch_num=1):
dataset_sink_mode = Validator.check_bool(dataset_sink_mode)
Validator.check_is_int(sink_size)
if sink_size < -1 or sink_size == 0:
raise ValueError("The sink_size must be -1 or positive, but got sink_size {}.".format(sink_size))
if sink_size == -1:
sink_size = dataset.get_dataset_size()
if dataset_sink_mode:
if context.get_context("enable_ge"):
iterclass = _DatasetIterGE
else:
if context.get_context("mode") == context.GRAPH_MODE:
ms_role = os.getenv("MS_ROLE")
if ms_role in ("MS_PSERVER", "MS_SCHED"):
iterclass = _DatasetIterPSServer
elif ms_role == "MS_WORKER":
iterclass = _DatasetIterPSWork
elif (context.get_context("device_target") == "Ascend") or \
(context.get_context("device_target") == "GPU"):
iterclass = _DatasetIterMSLoopSink
elif context.get_context("device_target") == "CPU":
raise RuntimeError(
"Currently dataset sink mode is not supported when the device target is CPU.")
else:
iterclass = _DatasetIterPyNative
self.iter = iterclass(dataset, sink_size, epoch_num)
else:
iterclass = _DatasetIterNormal
self.iter = iterclass(dataset, epoch_num=epoch_num)
def __iter__(self):
return self.iter.__iter__()
# A temp solution for loop sink. Delete later
[docs] def types_shapes(self):
"""Get the types and shapes from dataset on the current configuration."""
return self.iter.types_shapes()
[docs] def sink_size(self):
"""Get sink_size for each iteration."""
return self.iter.get_sink_size()
[docs] def stop_send(self):
"""stop send data about data sink."""
self.iter.stop_send()
[docs] def release(self):
"""Free up resources about data sink."""
self.iter.release()
[docs] def continue_send(self):
"""continue send data to device at the beginning of epoch."""
self.iter.continue_send()
[docs] def get_data_info(self):
"""Get the types and shape of current batch."""
return self.iter.get_data_info()
class _DatasetIter:
"""Base iter for dataset helper"""
def __init__(self, dataset, sink_size, epoch_num):
self.dataset = dataset
self.sink_size = sink_size
self.sink_count = self.get_sink_count(dataset)
if not hasattr(dataset, '__transfer_dataset__'):
if hasattr(dataset, '__loop_size__'):
ms_role = os.getenv("MS_ROLE")
# PS mode does not support loop sink and need get the real sink size.
if ms_role != "MS_WORKER":
self.sink_size = dataset.__loop_size__
create_data_info_queue = (sink_size == 1 and self.sink_count == 1 and context.get_context(
"device_target") == "Ascend")
dataset.__transfer_dataset__ = _exec_datagraph(dataset, self.sink_size,
create_data_info_queue=create_data_info_queue)
if not hasattr(dataset, '__no_send__'):
_send_data(dataset, epoch_num)
else:
_send_data_no_flag(dataset, epoch_num)
self.stop_send = dataset.__transfer_dataset__.stop_send
self.release = dataset.__transfer_dataset__.release
self.continue_send = dataset.__transfer_dataset__.continue_send
self.get_data_info = dataset.__transfer_dataset__.get_data_info
self.dataset_types, self.dataset_shapes = _get_types_and_shapes(dataset)
def __iter__(self):
self.index = 0
return self
def __next__(self):
if self.index >= self.sink_count:
raise StopIteration()
self.index += 1
return self.op()
def types_shapes(self):
return self.dataset_types, self.dataset_shapes
def get_sink_count(self, dataset):
sink_count = 1
if hasattr(dataset, '__loop_size__'):
loop_size = dataset.__loop_size__
if loop_size <= dataset.get_dataset_size() and dataset.get_dataset_size() % loop_size != 0:
raise ValueError(f'Dataset size {dataset.get_dataset_size()} and '
f'sink_size {loop_size} are not matched.')
sink_count = math.ceil(dataset.get_dataset_size() / loop_size)
return sink_count
def get_sink_size(self):
"""get sink_size to device"""
sink_size = 1
ms_role = os.getenv("MS_ROLE")
if hasattr(self.dataset, '__loop_size__'):
sink_size = self.dataset.__loop_size__
elif ms_role == "MS_WORKER":
# PS mode does not support loop sink.
sink_size = 1
else:
if context.get_context("enable_ge") or context.get_context("device_target") == "Ascend" \
or context.get_context("device_target") == "GPU":
if self.sink_size > 0:
sink_size = self.sink_size
else:
sink_size = self.dataset.get_dataset_size()
return sink_size
class _DatasetIterGE(_DatasetIter):
"""Iter for GE."""
def __init__(self, dataset, sink_size, epoch_num):
super().__init__(dataset, sink_size, epoch_num)
self.sink_count = self.get_sink_count(dataset)
batch_expand_num = 1
if _need_to_full():
batch_expand_num = _get_device_num()
tensor_list_run = _construct_tensor_list(self.dataset_types, self.dataset_shapes, batch_expand_num)
def op():
return tensor_list_run
self.op = op
class _DatasetIterPyNative(_DatasetIter):
"""Iter for context (mode=PYNATIVE_MODE)."""
def __init__(self, dataset, sink_size, epoch_num):
super().__init__(dataset, sink_size, epoch_num)
if sink_size > 0:
self.sink_count = sink_size
else:
self.sink_count = dataset.get_dataset_size()
def op():
return tuple()
self.op = op
class _DatasetIterMSLoopSink(_DatasetIter):
"""Iter for context (device_target=Ascend)"""
def __init__(self, dataset, sink_size, epoch_num):
super().__init__(dataset, sink_size, epoch_num)
self.sink_count = self.get_sink_count(dataset)
# for self._parallel_mode equal to semi_auto_parallel or auto_parallel, and not using full_batch,
# use a complete tensor to compile, and slice tensor to run. The batch dimension of tensors for
# compile is device_number times the batch dimension of tensors for run. Now only support LoopSink.
if _need_to_full():
device_num = _get_device_num()
self.dataset_shapes = _to_full_shapes(self.dataset_shapes, device_num)
def op():
return tuple()
self.op = op
class _DatasetIterPSServer(_DatasetIter):
"""Iter for context on MS_PSERVER or MS_SCHED"""
def __init__(self, dataset, sink_size, epoch_num):
super().__init__(dataset, sink_size, epoch_num)
self.sink_count = 1
self.sink_size = 1
self.op = None
def op():
return _construct_tensor_list(self.dataset_types, self.dataset_shapes, batch_expand_num=1)
self.op = op
class _DatasetIterPSWork(_DatasetIter):
"""Iter for context on MS_WORKER"""
def __init__(self, dataset, sink_size, epoch_num):
super().__init__(dataset, sink_size, epoch_num)
if sink_size > 0:
self.sink_count = sink_size
else:
self.sink_count = dataset.get_dataset_size()
def op():
return tuple()
self.op = op
class _DatasetIterNormal:
"""Iter for normal(non sink) mode, feed the data from host."""
def __init__(self, dataset, epoch_num=-1):
self.dataset = dataset
self.device_num = _get_device_num()
self.global_rank = _get_global_rank()
self.iter = self.dataset.create_tuple_iterator(num_epochs=epoch_num, do_copy=True)
def __iter__(self):
return self
def __next__(self):
data = self.iter.__next__()
return data
__all__ = ["DatasetHelper", "connect_network_with_dataset"]