Source code for mindspore.nn.probability.distribution.poisson

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Poisson Distribution"""
import numpy as np
from mindspore.ops import operations as P
from mindspore.ops import composite as C
import mindspore.nn as nn
from mindspore._checkparam import Validator
from mindspore.common import dtype as mstype
from .distribution import Distribution
from ._utils.utils import check_greater_zero
from ._utils.custom_ops import exp_generic, log_generic


[docs]class Poisson(Distribution): """ Poisson Distribution. Args: rate (list, numpy.ndarray, Tensor): The rate of the Poisson distribution.. seed (int): The seed used in sampling. The global seed is used if it is None. Default: None. dtype (mindspore.dtype): The type of the event samples. Default: mstype.float32. name (str): The name of the distribution. Default: 'Poisson'. Supported Platforms: ``Ascend`` ``GPU`` Note: `rate` must be strictly greater than 0. `dist_spec_args` is `rate`. Examples: >>> import mindspore >>> import mindspore.nn as nn >>> import mindspore.nn.probability.distribution as msd >>> from mindspore import Tensor >>> # To initialize an Poisson distribution of the rate 0.5. >>> p1 = msd.Poisson([0.5], dtype=mindspore.float32) >>> # An Poisson distribution can be initialized without arguments. >>> # In this case, `rate` must be passed in through `args` during function calls. >>> p2 = msd.Poisson(dtype=mindspore.float32) >>> >>> # Here are some tensors used below for testing >>> value = Tensor([1, 2, 3], dtype=mindspore.int32) >>> rate_a = Tensor([0.6], dtype=mindspore.float32) >>> rate_b = Tensor([0.2, 0.5, 0.4], dtype=mindspore.float32) >>> >>> # Private interfaces of probability functions corresponding to public interfaces, including >>> # `prob`, `log_prob`, `cdf`, `log_cdf`, `survival_function`, and `log_survival`, are the same as follows. >>> # Args: >>> # value (Tensor): the value to be evaluated. >>> # rate (Tensor): the rate of the distribution. Default: self.rate. >>> # Examples of `prob`. >>> # Similar calls can be made to other probability functions >>> # by replacing `prob` by the name of the function. >>> ans = p1.prob(value) >>> print(ans.shape) (3,) >>> # Evaluate with respect to distribution b. >>> ans = p1.prob(value, rate_b) >>> print(ans.shape) (3,) >>> # `rate` must be passed in during function calls. >>> ans = p2.prob(value, rate_a) >>> print(ans.shape) (3,) >>> # Functions `mean`, `mode`, `sd`, and 'var' have the same arguments as follows. >>> # Args: >>> # rate (Tensor): the rate of the distribution. Default: self.rate. >>> # Examples of `mean`, `sd`, `mode`, and `var` are similar. >>> ans = p1.mean() # return 2 >>> print(ans.shape) () >>> ans = p1.mean(rate_b) # return 1 / rate_b >>> print(ans.shape) (3,) >>> # `rate` must be passed in during function calls. >>> ans = p2.mean(rate_a) >>> print(ans.shape) (1,) >>> # Examples of `sample`. >>> # Args: >>> # shape (tuple): the shape of the sample. Default: () >>> # probs1 (Tensor): the rate of the distribution. Default: self.rate. >>> ans = p1.sample() >>> print(ans.shape) (1, ) >>> ans = p1.sample((2,3)) >>> print(ans.shape) (2, 3, 1) >>> ans = p1.sample((2,3), rate_b) >>> print(ans.shape) (2, 3, 3) >>> ans = p2.sample((2,3), rate_a) >>> print(ans.shape) (2, 3, 1) """ def __init__(self, rate=None, seed=None, dtype=mstype.float32, name="Poisson"): """ Constructor of Poisson. """ param = dict(locals()) param['param_dict'] = {'rate': rate} valid_dtype = mstype.int_type + mstype.uint_type + mstype.float_type Validator.check_type_name("dtype", dtype, valid_dtype, type(self).__name__) # As some operators can't accept scalar input, check the type here if isinstance(rate, (int, float)): raise TypeError("Input rate can't be scalar") super(Poisson, self).__init__(seed, dtype, name, param) self._rate = self._add_parameter(rate, 'rate') if self.rate is not None: check_greater_zero(self.rate, 'rate') # ops needed for the class self.exp = exp_generic self.log = log_generic self.squeeze = P.Squeeze(0) self.cast = P.Cast() self.floor = P.Floor() self.dtypeop = P.DType() self.shape = P.Shape() self.fill = P.Fill() self.less = P.Less() self.equal = P.Equal() self.select = P.Select() self.lgamma = nn.LGamma() self.igamma = nn.IGamma() self.poisson = C.poisson def extend_repr(self): if self.is_scalar_batch: s = f'rate = {self.rate}' else: s = f'batch_shape = {self._broadcast_shape}' return s @property def rate(self): """ Return `rate` of the distribution after casting to dtype. """ return self._rate def _get_dist_type(self): return "Poisson" def _get_dist_args(self, rate=None): if rate is not None: self.checktensor(rate, 'rate') else: rate = self.rate return (rate,) def _mean(self, rate=None): r""" .. math:: MEAN(POISSON) = \lambda. """ rate = self._check_param_type(rate) return rate def _mode(self, rate=None): r""" .. math:: MODE(POISSON) = \lfloor{\lambda}. """ rate = self._check_param_type(rate) return self.floor(rate) def _var(self, rate=None): r""" .. math:: VAR(POISSON) = \lambda. """ rate = self._check_param_type(rate) return rate def _log_prob(self, value, rate=None): r""" Log probability density function of Poisson distributions. Args: Args: value (Tensor): The value to be evaluated. rate (Tensor): The rate of the distribution. Default: self.rate. Note: `value` must be greater or equal to zero. .. math:: log_pdf(x) = x * \log(\lambda) - \lambda - \log(\Gamma(x)) if x >= 0 else -inf """ value = self._check_value(value, "value") value = self.cast(value, self.dtype) rate = self._check_param_type(rate) log_rate = self.log(rate) zeros = self.fill(self.dtypeop(value), self.shape(value), 0.0) inf = self.fill(self.dtypeop(value), self.shape(value), np.inf) safe_x = self.select(self.less(value, zeros), zeros, value) y = log_rate * safe_x - self.lgamma(safe_x + 1.) comp = self.equal(value, safe_x) log_unnormalized_prob = self.select(comp, y, -inf) log_normalization = self.exp(log_rate) return log_unnormalized_prob - log_normalization def _cdf(self, value, rate=None): r""" Cumulative distribution function (cdf) of Poisson distributions. Args: value (Tensor): The value to be evaluated. rate (Tensor): The rate of the distribution. Default: self.rate. Note: `value` must be greater or equal to zero. .. math:: cdf(x) = \Gamma(x + 1) if x >= 0 else 0 """ value = self._check_value(value, 'value') value = self.cast(value, self.dtype) rate = self._check_param_type(rate) zeros = self.fill(self.dtypeop(value), self.shape(value), 0.0) comp = self.less(value, zeros) safe_x = self.select(comp, zeros, value) cdf = 1. - self.igamma(1. + safe_x, rate) return self.select(comp, zeros, cdf) def _sample(self, shape=(), rate=None): """ Sampling. Args: shape (tuple): The shape of the sample. Default: (). rate (Tensor): The rate of the distribution. Default: self.rate. Returns: Tensor, shape is shape + batch_shape. """ shape = self.checktuple(shape, 'shape') rate = self._check_param_type(rate) # now Poisson sampler supports only fp32 rate = self.cast(rate, mstype.float32) origin_shape = shape + self.shape(rate) if origin_shape == (): sample_shape = (1,) else: sample_shape = origin_shape sample_poisson = self.poisson(sample_shape, rate, self.seed) value = self.cast(sample_poisson, self.dtype) if origin_shape == (): value = self.squeeze(value) return value