# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""TimeMonitor Callback class."""
import time
from mindspore import log as logger
from ._callback import Callback
[docs]class TimeMonitor(Callback):
"""
Monitor the time in training.
Args:
data_size (int): Dataset size. Default: None.
"""
def __init__(self, data_size=None):
super(TimeMonitor, self).__init__()
self.data_size = data_size
def epoch_begin(self, run_context):
self.epoch_time = time.time()
def epoch_end(self, run_context):
epoch_seconds = (time.time() - self.epoch_time) * 1000
step_size = self.data_size
cb_params = run_context.original_args()
if hasattr(cb_params, "batch_num"):
batch_num = cb_params.batch_num
if isinstance(batch_num, int) and batch_num > 0:
step_size = cb_params.batch_num
if not isinstance(step_size, int) or step_size < 1:
logger.error("data_size must be positive int.")
return
step_seconds = epoch_seconds / step_size
print("Epoch time: {:5.3f}, per step time: {:5.3f}".format(epoch_seconds, step_seconds), flush=True)