Source code for mindspore.ops.operations.sparse_ops

# coding: utf-8

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

# limitations under the License.
# ============================================================================

"""Operators for sparse operators."""

from ..._checkparam import Validator as validator
from ...common import dtype as mstype
from ..primitive import PrimitiveWithInfer, prim_attr_register

[docs]class SparseToDense(PrimitiveWithInfer): """ Convert a sparse representation into a dense tensor. Inputs: - **indices** (Tensor) - The indices of sparse representation. - **values** (Tensor) - Values corresponding to each row of indices. - **dense_shape** (tuple) - A int tuple which specifies the shape of dense tensor. Returns: Tensor, the shape of tensor is dense_shape. Examples: >>> indices = Tensor([[0, 1], [1, 2]]) >>> values = Tensor([1, 2], dtype=ms.float32) >>> dense_shape = (3, 4) >>> out = P.SparseToDense()(indices, values, dense_shape) """ @prim_attr_register def __init__(self): """init index_select""" self.init_prim_io_names(inputs=['indices', 'values', 'dense_shape'], outputs=['output']) def __infer__(self, indices, values, dense_shape): validator.check_subclass("indices", indices['dtype'], mstype.tensor, self.name) validator.check_subclass("values", values['dtype'], mstype.tensor, self.name) out = {'shape': dense_shape['value'], 'dtype': values['dtype'], 'value': None} return out