# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Geometric Distribution"""
import numpy as np
from mindspore.ops import operations as P
from mindspore.ops import composite as C
from mindspore.common import dtype as mstype
from .distribution import Distribution
from ._utils.utils import cast_to_tensor, check_prob, check_type, check_distribution_name,\
raise_none_error
from ._utils.custom_ops import exp_generic, log_generic
[docs]class Geometric(Distribution):
"""
Geometric Distribution.
It represents k+1 Bernoulli trials needed to get one success, k is the number of failures.
Args:
probs (float, list, numpy.ndarray, Tensor, Parameter): probability of success.
seed (int): seed to use in sampling. Default: 0.
dtype (mindspore.dtype): type of the distribution. Default: mstype.int32.
name (str): name of the distribution. Default: Geometric.
Note:
probs should be proper probabilities (0 < p < 1).
Dist_spec_args is probs.
Examples:
>>> # To initialize a Geometric distribution of prob 0.5
>>> import mindspore.nn.probability.distribution as msd
>>> n = msd.Geometric(0.5, dtype=mstype.int32)
>>>
>>> # The following creates two independent Geometric distributions
>>> n = msd.Geometric([0.5, 0.5], dtype=mstype.int32)
>>>
>>> # A Geometric distribution can be initilized without arguments
>>> # In this case, probs must be passed in through args during function calls.
>>> n = msd.Geometric(dtype=mstype.int32)
>>>
>>> # To use Geometric in a network
>>> class net(Cell):
>>> def __init__(self):
>>> super(net, self).__init__():
>>> self.g1 = msd.Geometric(0.5, dtype=mstype.int32)
>>> self.g2 = msd.Geometric(dtype=mstype.int32)
>>>
>>> # Tthe following calls are valid in construct
>>> def construct(self, value, probs_b, probs_a):
>>>
>>> # Similar calls can be made to other probability functions
>>> # by replacing 'prob' with the name of the function
>>> ans = self.g1.prob(value)
>>> # Evaluate with the respect to distribution b
>>> ans = self.g1.prob(value, probs_b)
>>>
>>> # Probs must be passed in during function calls
>>> ans = self.g2.prob(value, probs_a)
>>>
>>> # Functions 'sd', 'var', 'entropy' have the same usage as 'mean'
>>> # Will return 1.0
>>> ans = self.g1.mean()
>>> # Another possible usage
>>> ans = self.g1.mean(probs_b)
>>>
>>> # Probs must be passed in during function calls
>>> ans = self.g2.mean(probs_a)
>>>
>>> # Usage of 'kl_loss' and 'cross_entropy' are similar
>>> ans = self.g1.kl_loss('Geometric', probs_b)
>>> ans = self.g1.kl_loss('Geometric', probs_b, probs_a)
>>>
>>> # Additional probs must be passed in
>>> ans = self.g2.kl_loss('Geometric', probs_b, probs_a)
>>>
>>> # Sample
>>> ans = self.g1.sample()
>>> ans = self.g1.sample((2,3))
>>> ans = self.g1.sample((2,3), probs_b)
>>> ans = self.g2.sample((2,3), probs_a)
"""
def __init__(self,
probs=None,
seed=0,
dtype=mstype.int32,
name="Geometric"):
"""
Constructor of Geometric distribution.
"""
param = dict(locals())
valid_dtype = mstype.int_type + mstype.uint_type + mstype.float_type
check_type(dtype, valid_dtype, type(self).__name__)
super(Geometric, self).__init__(seed, dtype, name, param)
self.parameter_type = mstype.float32
if probs is not None:
self._probs = cast_to_tensor(probs, self.parameter_type)
check_prob(self._probs)
else:
self._probs = probs
self.minval = np.finfo(np.float).tiny
# ops needed for the class
self.exp = exp_generic
self.log = log_generic
self.squeeze = P.Squeeze(0)
self.cast = P.Cast()
self.const = P.ScalarToArray()
self.dtypeop = P.DType()
self.fill = P.Fill()
self.floor = P.Floor()
self.issubclass = P.IsSubClass()
self.less = P.Less()
self.pow = P.Pow()
self.select = P.Select()
self.shape = P.Shape()
self.sq = P.Square()
self.sqrt = P.Sqrt()
self.uniform = C.uniform
def extend_repr(self):
if self.is_scalar_batch:
str_info = f'probs = {self.probs}'
else:
str_info = f'batch_shape = {self._broadcast_shape}'
return str_info
@property
def probs(self):
"""
Returns the probability of success of the Bernoulli trail.
"""
return self._probs
def _check_param(self, probs1):
"""
Check availablity of distribution specific args probs1.
"""
if probs1 is not None:
if self.context_mode == 0:
self.checktensor(probs1, 'probs1')
else:
probs1 = self.checktensor(probs1, 'probs1')
return self.cast(probs1, self.parameter_type)
return self.probs if self.probs is not None else raise_none_error('probs1')
def _mean(self, probs1=None):
r"""
.. math::
MEAN(Geo) = \fratc{1 - probs1}{probs1}
"""
probs1 = self._check_param(probs1)
return (1. - probs1) / probs1
def _mode(self, probs1=None):
r"""
.. math::
MODE(Geo) = 0
"""
probs1 = self._check_param(probs1)
return self.fill(self.dtypeop(probs1), self.shape(probs1), 0.)
def _var(self, probs1=None):
r"""
.. math::
VAR(Geo) = \frac{1 - probs1}{probs1 ^ {2}}
"""
probs1 = self._check_param(probs1)
return (1.0 - probs1) / self.sq(probs1)
def _entropy(self, probs1=None):
r"""
.. math::
H(Geo) = \frac{-1 * probs0 \log_2 (1-probs0)\ - prob1 * \log_2 (1-probs1)\ }{probs1}
"""
probs1 = self._check_param(probs1)
probs0 = 1.0 - probs1
return (-probs0 * self.log(probs0) - probs1 * self.log(probs1)) / probs1
def _cross_entropy(self, dist, probs1_b, probs1=None):
r"""
Evaluate cross_entropy between Geometric distributions.
Args:
dist (str): type of the distributions. Should be "Geometric" in this case.
probs1_b (Tensor): probability of success of distribution b.
probs1_a (Tensor): probability of success of distribution a. Default: self.probs.
"""
check_distribution_name(dist, 'Geometric')
return self._entropy(probs1) + self._kl_loss(dist, probs1_b, probs1)
def _prob(self, value, probs1=None):
r"""
pmf of Geometric distribution.
Args:
value (Tensor): a Tensor composed of only natural numbers.
probs (Tensor): probability of success. Default: self.probs.
.. math::
pmf(k) = probs0 ^k * probs1 if k >= 0;
pmf(k) = 0 if k < 0.
"""
value = self._check_value(value, 'value')
value = self.cast(value, mstype.float32)
value = self.floor(value)
probs1 = self._check_param(probs1)
pmf = self.exp(self.log(1.0 - probs1) * value + self.log(probs1))
zeros = self.fill(self.dtypeop(probs1), self.shape(pmf), 0.0)
comp = self.less(value, zeros)
return self.select(comp, zeros, pmf)
def _cdf(self, value, probs1=None):
r"""
cdf of Geometric distribution.
Args:
value (Tensor): a Tensor composed of only natural numbers.
probs (Tensor): probability of success. Default: self.probs.
.. math::
cdf(k) = 1 - probs0 ^ (k+1) if k >= 0;
cdf(k) = 0 if k < 0.
"""
value = self._check_value(value, 'value')
value = self.cast(value, mstype.float32)
value = self.floor(value)
probs1 = self._check_param(probs1)
probs0 = 1.0 - probs1
cdf = 1.0 - self.pow(probs0, value + 1.0)
zeros = self.fill(self.dtypeop(probs1), self.shape(cdf), 0.0)
comp = self.less(value, zeros)
return self.select(comp, zeros, cdf)
def _kl_loss(self, dist, probs1_b, probs1=None):
r"""
Evaluate Geometric-Geometric kl divergence, i.e. KL(a||b).
Args:
dist (str): type of the distributions. Should be "Geometric" in this case.
probs1_b (Tensor): probability of success of distribution b.
probs1_a (Tensor): probability of success of distribution a. Default: self.probs.
.. math::
KL(a||b) = \log(\frac{probs1_a}{probs1_b}) + \frac{probs0_a}{probs1_a} * \log(\frac{probs0_a}{probs0_b})
"""
check_distribution_name(dist, 'Geometric')
probs1_b = self._check_value(probs1_b, 'probs1_b')
probs1_b = self.cast(probs1_b, self.parameter_type)
probs1_a = self._check_param(probs1)
probs0_a = 1.0 - probs1_a
probs0_b = 1.0 - probs1_b
return self.log(probs1_a / probs1_b) + (probs0_a / probs1_a) * self.log(probs0_a / probs0_b)
def _sample(self, shape=(), probs1=None):
"""
Sampling.
Args:
shape (tuple): shape of the sample. Default: ().
probs (Tensor): probability of success. Default: self.probs.
Returns:
Tensor, shape is shape + batch_shape.
"""
shape = self.checktuple(shape, 'shape')
probs1 = self._check_param(probs1)
origin_shape = shape + self.shape(probs1)
if origin_shape == ():
sample_shape = (1,)
else:
sample_shape = origin_shape
minval = self.const(self.minval)
maxval = self.const(1.0)
sample_uniform = self.uniform(sample_shape, minval, maxval, self.seed)
sample = self.floor(self.log(sample_uniform) / self.log(1.0 - probs1))
value = self.cast(sample, self.dtype)
if origin_shape == ():
value = self.squeeze(value)
return value