# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Initialize normal distributions"""
import numpy as np
import mindspore.common.dtype as mstype
from mindspore.common.tensor import Tensor
from mindspore.common.parameter import Parameter
from mindspore.ops import operations as P
from ...cell import Cell
from ..distribution.normal import Normal
__all__ = ['NormalPrior', 'NormalPosterior']
[docs]class NormalPrior(Cell):
r"""
To initialize a normal distribution of mean 0 and standard deviation 0.1.
Args:
dtype (:class:`mindspore.dtype`): The argument is used to define the data type of the output tensor.
Default: mindspore.float32.
mean (int, float): Mean of normal distribution. Default: 0.
std (int, float): Standard deviation of normal distribution. Default: 0.1.
Returns:
Cell, a normal distribution.
"""
def __init__(self, dtype=mstype.float32, mean=0, std=0.1):
super(NormalPrior, self).__init__()
self.normal = Normal(mean, std, dtype=dtype)
def construct(self, *inputs):
return self.normal(*inputs)
[docs]class NormalPosterior(Cell):
r"""
Build Normal distributions with trainable parameters.
Args:
name (str): Name prepended to trainable parameter.
shape (list, tuple): Shape of the mean and standard deviation.
dtype (:class:`mindspore.dtype`): The argument is used to define the data type of the output tensor.
Default: mindspore.float32.
loc_mean (int, float): Mean of distribution to initialize trainable parameters. Default: 0.
loc_std (int, float): Standard deviation of distribution to initialize trainable parameters. Default: 0.1.
untransformed_scale_mean (int, float): Mean of distribution to initialize trainable parameters. Default: -5.
untransformed_scale_std (int, float): Standard deviation of distribution to initialize trainable parameters.
Default: 0.1.
Returns:
Cell, a normal distribution.
"""
def __init__(self,
name,
shape,
dtype=mstype.float32,
loc_mean=0,
loc_std=0.1,
untransformed_scale_mean=-5,
untransformed_scale_std=0.1):
super(NormalPosterior, self).__init__()
if not isinstance(name, str):
raise TypeError('The type of `name` should be `str`')
if not isinstance(shape, (tuple, list)):
raise TypeError('The type of `shape` should be `tuple` or `list`')
if isinstance(loc_mean, bool) or not isinstance(loc_mean, (int, float)):
raise TypeError('The type of `loc_mean` should be `int` or `float`')
if isinstance(untransformed_scale_mean, bool) or not isinstance(untransformed_scale_mean, (int, float)):
raise TypeError('The type of `untransformed_scale_mean` should be `int` or `float`')
if isinstance(loc_std, bool) or not (isinstance(loc_std, (int, float)) and loc_std >= 0):
raise TypeError('The type of `loc_std` should be `int` or `float` and its value should > 0')
if isinstance(loc_std, bool) or not (isinstance(untransformed_scale_std, (int, float)) and
untransformed_scale_std >= 0):
raise TypeError('The type of `untransformed_scale_std` should be `int` or `float` and '
'its value should > 0')
self.mean = Parameter(
Tensor(np.random.normal(loc_mean, loc_std, shape), dtype=dtype), name=name + '_mean')
self.untransformed_std = Parameter(
Tensor(np.random.normal(untransformed_scale_mean, untransformed_scale_std, shape), dtype=dtype),
name=name + '_untransformed_std')
self.normal = Normal()
[docs] def std_trans(self, std_pre):
"""Transform std_pre to prevent its value being zero."""
std = 1e-6 + P.Log()(P.Exp()(std_pre) + 1)
return std
def construct(self, *inputs):
std = self.std_trans(self.untransformed_std)
return self.normal(*inputs, mean=self.mean, sd=std)