Source code for mindspore.nn.probability.bijector.power_transform

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Power Bijector"""
from mindspore.ops import operations as P
from mindspore._checkparam import Validator as validator
from mindspore._checkparam import Rel
from ..distribution._utils.custom_ops import exp_generic, expm1_generic, log_generic, log1p_generic
from .bijector import Bijector


[docs]class PowerTransform(Bijector): r""" Power Bijector. This Bijector performs the operation: Y = g(X) = (1 + X * c)^(1 / c), X >= -1 / c, where c >= 0 is the power. The power transform maps inputs from `[-1/c, inf]` to `[0, inf]`. This bijector is equivalent to the `Exp` bijector when `c=0` Raises: ValueError: If the power is less than 0 or is not known statically. Args: power (int or float): scale factor. Default: 0. name (str): name of the bijector. Default: 'PowerTransform'. Examples: >>> # To initialize a PowerTransform bijector of power 0.5 >>> import mindspore.nn.probability.bijector as msb >>> n = msb.PowerTransform(0.5) >>> >>> # To use PowerTransform distribution in a network >>> class net(Cell): >>> def __init__(self): >>> super(net, self).__init__(): >>> self.p1 = msb.PowerTransform(0.5) >>> >>> def construct(self, value): >>> # Similar calls can be made to other probability functions >>> # by replacing 'forward' with the name of the function >>> ans1 = self.s1.forward(value) >>> ans2 = self.s1.inverse(value) >>> ans3 = self.s1.forward_log_jacobian(value) >>> ans4 = self.s1.inverse_log_jacobian(value) """ def __init__(self, power=0, name='PowerTransform', param=None): param = dict(locals()) if param is None else param super(PowerTransform, self).__init__(name=name, param=param) validator.check_value_type('power', power, [int, float], self.name) validator.check_number("power", power, 0, Rel.GE, self.name) self._power = power self.pow = P.Pow() self.exp = exp_generic self.expm1 = expm1_generic self.log = log_generic self.log1p = log1p_generic @property def power(self): return self._power def extend_repr(self): str_info = f'power = {self.power}' return str_info def shape_mapping(self, shape): return shape def _forward(self, x): x = self._check_value(x, 'value') if self.power == 0: return self.exp(x) return self.exp(self.log1p(x * self.power) / self.power) def _inverse(self, y): y = self._check_value(y, 'value') if self.power == 0: return self.log(y) return self.expm1(self.log(y) * self.power) / self.power def _forward_log_jacobian(self, x): r""" .. math: if c == 0: f(x) = e^x f'(x) = e^x \log(f'(x)) = \log(e^x) = x else: f(x) = e^\frac{\log(xc + 1)}{c} f'(x) = e^\frac{\log(xc + 1)}{c} * \frac{1}{xc + 1} \log(f'(x)) = (\frac{1}{c} - 1) * \log(xc + 1) """ x = self._check_value(x, 'value') if self.power == 0: return x return (1. / self.power - 1) * self.log1p(x * self.power) def _inverse_log_jacobian(self, y): r""" .. math: if c == 0: f(x) = \log(x) f'(x) = \frac{1}{x} \log(f'(x)) = \log(\frac{1}{x}) = -\log(x) else: f(x) = \frac{e^\log(y)*c + 1}{c} f'(x) = \frac{e^c\log(y)}{y} \log(f'(x)) = \log(\frac{e^c\log(y)}{y}) = (c-1) * \log(y) """ y = self._check_value(y, 'value') return (self.power - 1) * self.log(y)