# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""lamb"""
import numpy as np
from mindspore import context
from mindspore.common import dtype as mstype
from mindspore.common.initializer import initializer
from mindspore.ops import operations as P
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.common.parameter import Parameter
from mindspore.common.tensor import Tensor
from mindspore._checkparam import Validator as validator
from mindspore._checkparam import Rel
from .optimizer import Optimizer
from .. import layer
from .. import graph_kernels as G
num_one = Tensor(np.ones([1]), mstype.float32)
_lamb_opt = C.MultitypeFuncGraph("lamb_opt")
@_lamb_opt.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Number", "Tensor", "Tensor", "Tensor",
"Tensor", "Bool", "Bool")
def _update_run_op(beta1, beta2, eps, global_step, lr, weight_decay, param, m, v, gradient, decay_flag, optim_filter):
"""
Update parameters.
Args:
beta1 (Tensor): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
beta2 (Tensor): The exponential decay rate for the 2nd moment estimations. Should be in range (0.0, 1.0).
eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
lr (Tensor): Learning rate.
weight_decay (Number): Weight decay. Should be equal to or greater than 0.
global_step (Tensor): Global step.
param (Tensor): Parameters.
m (Tensor): m value of parameters.
v (Tensor): v value of parameters.
gradient (Tensor): Gradient of parameters.
decay_flag (bool): Specifies whether param update with weight decay.
optim_filter(bool): Applies parameter update or not.
Returns:
Tensor, the new value of v after updating.
"""
if optim_filter:
op_mul = P.Mul()
op_sqrt = P.Sqrt()
op_rsqrt = P.Rsqrt()
op_square = P.Square()
op_cast = P.Cast()
op_reshape = P.Reshape()
op_shape = P.Shape()
op_pow = P.Pow()
op_norm = layer.Norm()
op_select = P.Select()
op_greater = P.Greater()
op_fill = P.Fill()
op_dtype = P.DType()
param_fp32 = op_cast(param, mstype.float32)
m_fp32 = op_cast(m, mstype.float32)
v_fp32 = op_cast(v, mstype.float32)
gradient_fp32 = op_cast(gradient, mstype.float32)
next_m = op_mul(beta1, m_fp32) + op_mul(op_cast(num_one, mstype.float32) - beta1, gradient_fp32)
next_v = op_mul(beta2, v_fp32) + op_mul(op_cast(num_one, mstype.float32) - beta2, op_square(gradient_fp32))
next_mm = next_m / (op_cast(num_one, mstype.float32)
- op_pow(beta1, op_cast(global_step + num_one, mstype.float32)))
next_vv = next_v / (op_cast(num_one, mstype.float32) -
op_pow(beta2, op_cast(global_step + num_one, mstype.float32)))
w_norm = op_norm(param_fp32)
g_norm = op_norm(gradient_fp32)
g_norm_hat = op_norm(op_mul(next_mm, op_rsqrt(next_vv + eps)) + weight_decay * param_fp32)
zeros = F.zeros_like(w_norm)
ones = op_fill(op_dtype(w_norm), op_shape(w_norm), 1.0)
trust_ratio = op_select(
op_greater(w_norm, zeros),
op_select(op_greater(g_norm, zeros), w_norm / g_norm_hat, ones),
ones)
tens = op_fill(op_dtype(trust_ratio), op_shape(trust_ratio), 10.0)
trust_ratio = C.clip_by_value(trust_ratio, zeros, tens)
update = next_mm / (op_sqrt(next_vv) + eps)
if decay_flag:
update = update + op_mul(weight_decay, param_fp32)
update_with_lr = op_mul(op_mul(trust_ratio, lr), update)
next_param = param_fp32 - op_reshape(update_with_lr, op_shape(param_fp32))
next_param = F.depend(next_param, F.assign(param, next_param))
next_param = F.depend(next_param, F.assign(m, next_m))
next_param = F.depend(next_param, F.assign(v, next_v))
return next_param
return gradient
lamb_opt_graph_kernel = C.MultitypeFuncGraph("lamb_opt_graph_kernel")
@lamb_opt_graph_kernel.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Number",
"Tensor", "Tensor", "Tensor", "Tensor", "Bool")
def _update_run_op_graph_kernel(beta1, beta2, eps, global_step, lr, weight_decay, param, m, v, gradient, decay_flag):
"""
Update parameters.
Args:
beta1 (Tensor): The exponential decay rate for the 1st moment estimations. Should be in range (0.0, 1.0).
beta2 (Tensor): The exponential decay rate for the 2nd moment estimations. Should be in range (0.0, 1.0).
eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
lr (Tensor): Learning rate.
weight_decay (Number): Weight decay. Should be equal to or greater than 0.
global_step (Tensor): Global step.
param (Tensor): Parameters.
m (Tensor): m value of parameters.
v (Tensor): v value of parameters.
gradient (Tensor): Gradient of parameters.
decay_flag (bool): Specifies whether param update with weight decay.
Returns:
Tensor, the new value of v after updating.
"""
op_mul = P.Mul()
op_square = P.Square()
op_cast = P.Cast()
op_shape = P.Shape()
op_pow = P.Pow()
op_norm = layer.Norm()
op_fill = P.Fill()
op_dtype = P.DType()
param_fp32 = op_cast(param, mstype.float32)
gradient_fp32 = op_cast(gradient, mstype.float32)
i6_ex = op_cast(global_step + num_one, mstype.float32)
i9 = op_cast(num_one, mstype.float32) - beta1
x1 = op_cast(num_one, mstype.float32) - beta2
i6 = op_cast(num_one, mstype.float32) - op_pow(beta1, i6_ex)
i3 = op_cast(num_one, mstype.float32) - op_pow(beta2, i6_ex)
i1 = op_square(gradient_fp32)
add3, update = G.LambNextMV()(i1, v, i3, gradient, m, i6, param, beta1, i9, beta2, x1, weight_decay, eps)
if decay_flag:
update = update + op_mul(weight_decay, param_fp32)
w_norm = op_norm(param_fp32)
g_norm = op_norm(gradient_fp32)
g_norm_hat = op_norm(add3)
zeros = F.zeros_like(w_norm)
ones = op_fill(op_dtype(w_norm), op_shape(w_norm), 1.0)
tens = op_fill(op_dtype(w_norm), op_shape(w_norm), 10.0)
next_param = G.LambUpdateWithLR()(g_norm, w_norm, g_norm_hat, lr, update, param, zeros, ones, tens)
next_v = F.control_depend(add3, next_param)
return next_v
def _check_param_value(beta1, beta2, eps, prim_name):
validator.check_value_type("beta1", beta1, [float], prim_name)
validator.check_value_type("beta2", beta2, [float], prim_name)
validator.check_value_type("eps", eps, [float], prim_name)
validator.check_number_range("beta1", beta1, 0.0, 1.0, Rel.INC_NEITHER, prim_name)
validator.check_number_range("beta2", beta2, 0.0, 1.0, Rel.INC_NEITHER, prim_name)
validator.check_number_range("eps", eps, 0.0, float("inf"), Rel.INC_NEITHER, prim_name)
[docs]class Lamb(Optimizer):
"""
Lamb Dynamic Learning Rate.
LAMB is an optimization algorithm employing a layerwise adaptive large batch
optimization technique. Refer to the paper `LARGE BATCH OPTIMIZATION FOR DEEP LEARNING: TRAINING BERT IN 76
MINUTES <https://arxiv.org/abs/1904.00962>`_.
Note:
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
To improve parameter groups performance, the customized order of parameters can be supported.
Args:
params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
the element in `params` should be class `Parameter`. When the `params` is a list of `dict`, the "params",
"lr", "weight_decay" and "order_params" are the keys can be parsed.
- params: Required. The value should be a list of `Parameter`.
- lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
If not, the `learning_rate` in the API will be used.
- weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
will be used. If not, the `weight_decay` in the API will be used.
- order_params: Optional. If "order_params" in the keys, the value should be the order of parameters and
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
in the value of 'order_params' should be in one of group parameters.
learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or a graph for the learning rate.
When the learning_rate is an Iterable or a Tensor in a 1D dimension, use dynamic learning rate, then
the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
use dynamic learning rate, the i-th learning rate will be calculated during the process of training
according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor in a zero
dimension, use fixed learning rate. Other cases are not supported. The float learning rate should be
equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
beta1 (float): The exponential decay rate for the 1st moment estimations. Default: 0.9.
Should be in range (0.0, 1.0).
beta2 (float): The exponential decay rate for the 2nd moment estimations. Default: 0.999.
Should be in range (0.0, 1.0).
eps (float): Term added to the denominator to improve numerical stability. Default: 1e-6.
Should be greater than 0.
weight_decay (float): Weight decay (L2 penalty). Default: 0.0. Should be equal to or greater than 0.
Inputs:
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
Outputs:
tuple[bool], all elements are True.
Examples:
>>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay
>>> optim = nn.Lamb(params=net.trainable_params())
>>>
>>> #2) Use parameter groups and set different values
>>> poly_decay_lr = learning_rate_schedule.PolynomialDecayLR()
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
>>> {'params': no_conv_params, 'lr': poly_decay_lr},
>>> {'order_params': net.trainable_params(0.01, 0.0001, 10, 0.5)}]
>>> optim = nn.Lamb(group_params, learning_rate=0.1, weight_decay=0.0)
>>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
>>> # The no_conv_params's parameters will use dynamic learning rate of poly decay learning rate and default
>>> # weight decay of 0.0.
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
>>>
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> model = Model(net, loss_fn=loss, optimizer=optim)
"""
def __init__(self, params, learning_rate, beta1=0.9, beta2=0.999, eps=1e-6, weight_decay=0.0):
super(Lamb, self).__init__(learning_rate, params, weight_decay)
_check_param_value(beta1, beta2, eps, self.cls_name)
# turn them to scalar when me support scalar/tensor mix operations
self.beta1 = Tensor(np.array([beta1]).astype(np.float32))
self.beta2 = Tensor(np.array([beta2]).astype(np.float32))
self.eps = Tensor(np.array([eps]).astype(np.float32))
self.params = self.parameters
self.moments1 = self.params.clone(prefix="lamb_m", init='zeros')
self.moments2 = self.params.clone(prefix="lamb_v", init='zeros')
if not self.dynamic_lr:
self.global_step = Parameter(initializer(0, [1]), name='global_step')
self.assignadd = P.AssignAdd()
self.hyper_map = C.HyperMap()
self.enable_graph_kernel = context.get_context("enable_graph_kernel")
def construct(self, gradients):
lr = self.get_lr()
if self.enable_graph_kernel:
if self.is_group:
if self.is_group_lr:
optim_result = self.hyper_map(F.partial(lamb_opt_graph_kernel, self.beta1, self.beta2, self.eps,
self.global_step),
lr, self.weight_decay, self.params, self.moments1, self.moments2,
gradients, self.decay_flags)
else:
optim_result = self.hyper_map(F.partial(lamb_opt_graph_kernel, self.beta1, self.beta2, self.eps,
self.global_step, lr),
self.weight_decay, self.params, self.moments1, self.moments2,
gradients, self.decay_flags)
else:
optim_result = self.hyper_map(F.partial(lamb_opt_graph_kernel, self.beta1, self.beta2, self.eps,
self.global_step, lr, self.weight_decay),
self.params, self.moments1, self.moments2, gradients, self.decay_flags)
else:
if self.is_group:
if self.is_group_lr:
optim_result = self.hyper_map(F.partial(_lamb_opt, self.beta1, self.beta2, self.eps,
self.global_step),
lr, self.weight_decay, self.params, self.moments1, self.moments2,
gradients, self.decay_flags, self.optim_filter)
else:
optim_result = self.hyper_map(F.partial(_lamb_opt, self.beta1, self.beta2, self.eps,
self.global_step, lr),
self.weight_decay, self.params, self.moments1, self.moments2,
gradients, self.decay_flags, self.optim_filter)
else:
optim_result = self.hyper_map(F.partial(_lamb_opt, self.beta1, self.beta2, self.eps,
self.global_step, lr, self.weight_decay),
self.params, self.moments1, self.moments2, gradients,
self.decay_flags, self.optim_filter)
if self.use_parallel:
self.broadcast_params(optim_result)
if not self.dynamic_lr:
F.control_depend(lr, self.assignadd(self.global_step, 1))
return optim_result