# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Operators for nn."""
import math
import operator
from functools import reduce
import numpy as np
from ... import context
from ..._c_expression import signature_rw as sig_rw
from ..._c_expression import signature_kind as sig_kind
from ..._c_expression import signature_dtype as sig_dtype
from ..._checkparam import Validator as validator
from ..._checkparam import Rel
from ...common import dtype as mstype
from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register
from ..operations.math_ops import _infer_shape_reduce
def _check_positive_int_or_tuple(arg_name, arg_value, prim_name, allow_four=False, ret_four=False):
"""
Checks whether an argument is a positive int or tuple with 2 or 4(when allow_four is True) positive int elements.
"""
def _raise_message():
raise ValueError(f"For '{prim_name}' attr '{arg_name}' should be an positive int number or a tuple of two "
f"{'or four ' if allow_four else ''}positive int numbers, but got {arg_value}")
def _get_return_value():
if isinstance(arg_value, int):
ret = (1, 1, arg_value, arg_value) if ret_four else (arg_value, arg_value)
elif len(arg_value) == 2:
ret = (1, 1, arg_value[0], arg_value[1]) if ret_four else arg_value
elif len(arg_value) == 4:
if not allow_four:
_raise_message()
ret = arg_value if ret_four else (arg_value[2], arg_value[3])
else:
_raise_message()
return ret
validator.check_value_type(arg_name, arg_value, (int, tuple), prim_name)
ret_value = _get_return_value()
for item in ret_value:
if isinstance(item, int) and item > 0:
continue
_raise_message()
return ret_value
[docs]class Flatten(PrimitiveWithInfer):
r"""
Flattens a tensor without changing its batch size on the 0-th axis.
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, \ldots)` to be flattened.
Outputs:
Tensor, the shape of the output tensor is :math:`(N, X)`, where :math:`X` is
the product of the remaining dimension.
Examples:
>>> input_tensor = Tensor(np.ones(shape=[1, 2, 3, 4]), mindspore.float32)
>>> flatten = P.Flatten()
>>> output = flatten(input_tensor)
>>> assert output.shape == (1, 24)
"""
@prim_attr_register
def __init__(self):
pass
def infer_shape(self, input_x):
validator.check_integer('input_x rank', len(input_x), 1, Rel.GE, self.name)
prod = 1 if len(input_x) == 1 else reduce(operator.mul, input_x[1:])
return input_x[0], prod
def infer_dtype(self, input_x):
validator.check_subclass("input_x", input_x, mstype.tensor, self.name)
return input_x
[docs]class Softmax(PrimitiveWithInfer):
r"""
Softmax operation.
Applies the Softmax operation to the input tensor on the specified axis.
Suppose a slice along the given aixs :math:`x` then for each element :math:`x_i`
the Softmax function is shown as follows:
.. math::
\text{output}(x_i) = \frac{exp(x_i)}{\sum_{j = 0}^{N-1}\exp(x_j)},
where :math:`N` is the length of the tensor.
Args:
axis (Union[int, tuple]): The axis to do the Softmax operation. Default: -1.
Inputs:
- **logits** (Tensor) - The input of Softmax.
Outputs:
Tensor, with the same type and shape as the logits.
Examples:
>>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> softmax = P.Softmax()
>>> softmax(input_x)
[0.01165623, 0.03168492, 0.08612854, 0.23412167, 0.6364086]
"""
@prim_attr_register
def __init__(self, axis=-1):
self.init_prim_io_names(inputs=['x'], outputs=['output'])
validator.check_value_type("axis", axis, [int, tuple], self.name)
if isinstance(axis, int):
self.add_prim_attr('axis', (axis,))
for item in self.axis:
validator.check_value_type("item of axis", item, [int], self.name)
def infer_shape(self, logits):
validator.check_integer("length of axis", len(self.axis), 1, Rel.GE, self.name)
rank = len(logits)
for axis_v in self.axis:
validator.check_int_range("axis", axis_v, -rank, rank, Rel.INC_LEFT, self.name)
return logits
def infer_dtype(self, logits):
validator.check_subclass("logits", logits, mstype.tensor, self.name)
return logits
[docs]class LogSoftmax(PrimitiveWithInfer):
r"""
Log Softmax activation function.
Applies the Log Softmax function to the input tensor on the specified axis.
Suppose a slice along the given aixs :math:`x` then for each element :math:`x_i`
the Log Softmax function is shown as follows:
.. math::
\text{output}(x_i) = \log \left(\frac{exp(x_i)} {\sum_{j = 0}^{N-1}\exp(x_j)}\right),
where :math:`N` is the length of the Tensor.
Args:
axis (int): The axis to do the Log softmax operation. Default: -1.
Inputs:
- **logits** (Tensor) - The input of Log Softmax.
Outputs:
Tensor, with the same type and shape as the logits.
Examples:
>>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> log_softmax = P.LogSoftmax()
>>> log_softmax(input_x)
[-4.4519143, -3.4519143, -2.4519143, -1.4519144, -0.4519144]
"""
@prim_attr_register
def __init__(self, axis=-1):
validator.check_value_type("axis", axis, [int], self.name)
def infer_shape(self, logits):
rank = len(logits)
validator.check_int_range('axis', self.axis, -rank, rank, Rel.INC_LEFT, self.name)
return logits
def infer_dtype(self, logits):
validator.check_subclass("logits", logits, mstype.tensor, self.name)
return logits
[docs]class Softplus(PrimitiveWithInfer):
r"""
Softplus activation function.
Softplus is a smooth approximation to the ReLU function.
The function is shown as follows:
.. math::
\text{output} = \log(1 + \exp(\text{input_x})),
Inputs:
- **input_x** (Tensor) - The input tensor whose data type should be float.
Outputs:
Tensor, with the same type and shape as the `input_x`.
Examples:
>>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> softplus = P.Softplus()
>>> softplus(input_x)
[1.3132615, 2.126928, 3.0485873, 4.01815, 5.0067153]
"""
@prim_attr_register
def __init__(self):
"""init Softplus"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, input_x):
return input_x
def infer_dtype(self, input_x):
validator.check_tensor_type_same({'input_x': input_x}, mstype.float_type, self.name)
return input_x
[docs]class ReLU(PrimitiveWithInfer):
r"""
Computes ReLU(Rectified Linear Unit) of input tensor element-wise.
It returns :math:`\max(x,\ 0)` element-wise.
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, with the same type and shape as the `input_x`.
Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> relu = P.ReLU()
>>> result = relu(input_x)
[[0, 4.0, 0.0], [2.0, 0.0, 9.0]]
"""
@prim_attr_register
def __init__(self):
"""init ReLU"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, input_x):
return input_x
def infer_dtype(self, input_x):
validator.check_tensor_type_same({'input_x': input_x}, mstype.number_type, self.name)
return input_x
[docs]class ReLU6(PrimitiveWithInfer):
r"""
Computes ReLU(Rectified Linear Unit) upper bounded by 6 of input tensor element-wise.
It returns :math:`\min(\max(0,x), 6)` element-wise.
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, with the same type and shape as the `input_x`.
Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> relu6 = P.ReLU6()
>>> result = relu6(input_x)
"""
@prim_attr_register
def __init__(self):
"""init ReLU6"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, input_x):
return input_x
def infer_dtype(self, input_x):
validator.check_tensor_type_same({'input_x': input_x}, (mstype.float16, mstype.float32), self.name)
return input_x
class ReLUV2(PrimitiveWithInfer):
r"""
Computes ReLU(Rectified Linear Unit) of input tensor element-wise.
It returns :math:`\max(x,\ 0)` element-wise.
Inputs:
- **input_x** (Tensor) - The input tensor should be a 4-D tensor.
Outputs:
- **output** (Tensor) - Has the same type and shape as the `input_x`.
- **mask** (Tensor) - A tensor whose data type must be uint8.
Examples:
>>> input_x = Tensor(np.array([[[[1, -2], [-3, 4]], [[-5, 6], [7, -8]]]]), mindspore.float32)
>>> relu_v2 = P.ReLUV2()
>>> output = relu_v2(input_x)
([[[[1., 0.], [0., 4.]], [[0., 6.], [7., 0.]]]],
[[[[1, 0], [2, 0]], [[2, 0], [1, 0]]]])
"""
@prim_attr_register
def __init__(self):
"""init ReLUV2"""
self.init_prim_io_names(inputs=['x'], outputs=['output', 'mask'])
def __infer__(self, input_x):
input_shape = list(input_x['shape'])
input_dtype = input_x['dtype']
mask_shape = []
if len(input_shape) != 4:
raise ValueError("The `input_x` should be a 4-D tensor, "
f"but got a {len(input_shape)}-D tensor whose shape is {input_shape}")
for i in enumerate(input_shape):
if i[0] == 1:
if input_dtype == mstype.uint8 and input_dtype == mstype.int8:
mask_shape.append((input_shape[1] + 31) // 32)
else:
mask_shape.append((input_shape[1] + 15) // 16)
else:
mask_shape.append(i[1])
if input_dtype == mstype.uint8 and input_dtype == mstype.int8:
mask_shape.append(4)
else:
mask_shape.append(2)
output_shape = (input_x['shape'], mask_shape)
validator.check_subclass("input_x", input_dtype, mstype.tensor, self.name)
validator.check_tensor_type_same({'input_x': input_dtype}, mstype.number_type, self.name)
mask_dtype = mstype.uint8
output_dtype = (input_dtype, mask_dtype)
return {'shape': output_shape,
'dtype': output_dtype,
'value': None}
[docs]class Elu(PrimitiveWithInfer):
r"""
Computes exponential linear: `alpha * (exp(x) - 1)` if x < 0, `x` otherwise.
The data type of input tensor should be float.
Args:
alpha (float): The coefficient of negative factor whose type is float,
only support '1.0' currently. Default: 1.0.
Inputs:
- **input_x** (Tensor) - The input tensor whose data type should be float.
Outputs:
Tensor, has the same shape and data type as `input_x`.
Examples:
>>> input_x = Tensor(np.array([[-1.0, 4.0, -8.0], [2.0, -5.0, 9.0]]), mindspore.float32)
>>> elu = P.Elu()
>>> result = elu(input_x)
Tensor([[-0.632 4.0 -0.999]
[2.0 -0.993 9.0 ]], shape=(2, 3), dtype=mindspore.float32)
"""
@prim_attr_register
def __init__(self, alpha=1.0):
"""Init Elu"""
validator.check_value_type("alpha", alpha, [float], self.name)
validator.check_number("alpha", alpha, 1.0, Rel.EQ, self.name)
def infer_shape(self, input_x):
return input_x
def infer_dtype(self, input_x):
validator.check_tensor_type_same({'input_x': input_x}, mstype.float_type, self.name)
return input_x
[docs]class HSwish(PrimitiveWithInfer):
r"""
Hard swish activation function.
Applies hswish-type activation element-wise. The input is a Tensor with any valid shape.
Hard swish is defined as:
.. math::
\text{hswish}(x_{i}) = x_{i} * \frac{ReLU6(x_{i} + 3)}{6},
where :math:`x_{i}` is the :math:`i`-th slice along the given dim of the input Tensor.
Inputs:
- **input_data** (Tensor) - The input of HSwish.
Outputs:
Tensor, with the same type and shape as the `input_data`.
Examples:
>>> hswish = P.HSwish()
>>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
>>> result = hswish(input_x)
"""
@prim_attr_register
def __init__(self):
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, xshape):
return xshape
def infer_dtype(self, x_dtype):
validator.check_tensor_type_same({"x": x_dtype}, (mstype.float16, mstype.float32), self.name)
return x_dtype
[docs]class Sigmoid(PrimitiveWithInfer):
r"""
Sigmoid activation function.
Computes Sigmoid of input element-wise. The Sigmoid function is defined as:
.. math::
\text{sigmoid}(x_i) = \frac{1}{1 + exp(-x_i)},
where :math:`x_i` is the element of the input.
Inputs:
- **input_x** (Tensor) - The input of Sigmoid.
Outputs:
Tensor, with the same type and shape as the input_x.
Examples:
>>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> sigmoid = P.Sigmoid()
>>> sigmoid(input_x)
[0.73105866, 0.880797, 0.9525742, 0.98201376, 0.9933071]
"""
@prim_attr_register
def __init__(self):
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, input_x):
return input_x
def infer_dtype(self, input_x):
validator.check_tensor_type_same({"input_x": input_x}, (mstype.float16, mstype.float32), self.name)
return input_x
[docs]class HSigmoid(PrimitiveWithInfer):
r"""
Hard sigmoid activation function.
Applies hard sigmoid activation element-wise. The input is a Tensor with any valid shape.
Hard sigmoid is defined as:
.. math::
\text{hsigmoid}(x_{i}) = max(0, min(1, \frac{2 * x_{i} + 5}{10})),
where :math:`x_{i}` is the :math:`i`-th slice along the given dim of the input Tensor.
Inputs:
- **input_data** (Tensor) - The input of HSigmoid.
Outputs:
Tensor, with the same type and shape as the `input_data`.
Examples:
>>> hsigmoid = P.HSigmoid()
>>> input_x = Tensor(np.array([-1, -2, 0, 2, 1]), mindspore.float16)
>>> result = hsigmoid(input_x)
"""
@prim_attr_register
def __init__(self):
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, x_shape):
return x_shape
def infer_dtype(self, x_dtype):
validator.check_tensor_type_same({"x": x_dtype}, (mstype.float16, mstype.float32), self.name)
return x_dtype
[docs]class Tanh(PrimitiveWithInfer):
r"""
Tanh activation function.
Computes hyperbolic tangent of input element-wise. The Tanh function is defined as:
.. math::
tanh(x_i) = \frac{\exp(x_i) - \exp(-x_i)}{\exp(x_i) + \exp(-x_i)} = \frac{\exp(2x_i) - 1}{\exp(2x_i) + 1},
where :math:`x_i` is an element of the input Tensor.
Inputs:
- **input_x** (Tensor) - The input of Tanh.
Outputs:
Tensor, with the same type and shape as the input_x.
Examples:
>>> input_x = Tensor(np.array([1, 2, 3, 4, 5]), mindspore.float32)
>>> tanh = P.Tanh()
>>> tanh(input_x)
[0.7615941, 0.9640276, 0.9950548, 0.9993293, 0.99990916]
"""
@prim_attr_register
def __init__(self):
pass
def infer_shape(self, input_x):
return input_x
def infer_dtype(self, input_x):
validator.check_subclass("input_x", input_x, mstype.tensor, self.name)
return input_x
[docs]class FusedBatchNorm(Primitive):
r"""
FusedBatchNorm is a BatchNorm that moving mean and moving variance will be computed instead of being loaded.
Batch Normalization is widely used in convolutional networks. This operation applies
Batch Normalization over input to avoid internal covariate shift as described in the
paper `Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift <https://arxiv.org/abs/1502.03167>`_. It rescales and recenters the
feature using a mini-batch of data and the learned parameters which can be described
in the following formula.
.. math::
y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta
where :math:`\gamma` is scale, :math:`\beta` is bias, :math:`\epsilon` is epsilon.
Args:
mode (int): Mode of batch normalization, value is 0 or 1. Default: 0.
epsilon (float): A small value added for numerical stability. Default: 1e-5.
momentum (float): The hyper parameter to compute moving average for running_mean and running_var
(e.g. :math:`new\_running\_mean = momentum * running\_mean + (1 - momentum) * current\_mean`).
Momentum value should be [0, 1]. Default: 0.9.
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, C)`.
- **scale** (Tensor) - Tensor of shape :math:`(C,)`.
- **bias** (Tensor) - Tensor of shape :math:`(C,)`.
- **mean** (Tensor) - Tensor of shape :math:`(C,)`.
- **variance** (Tensor) - Tensor of shape :math:`(C,)`.
Outputs:
Tuple of 5 Tensor, the normalized input and the updated parameters.
- **output_x** (Tensor) - The same type and shape as the `input_x`.
- **updated_scale** (Tensor) - Tensor of shape :math:`(C,)`.
- **updated_bias** (Tensor) - Tensor of shape :math:`(C,)`.
- **updated_moving_mean** (Tensor) - Tensor of shape :math:`(C,)`.
- **updated_moving_variance** (Tensor) - Tensor of shape :math:`(C,)`.
Examples:
>>> input_x = Tensor(np.ones([128, 64, 32, 64]), mindspore.float32)
>>> scale = Tensor(np.ones([64]), mindspore.float32)
>>> bias = Tensor(np.ones([64]), mindspore.float32)
>>> mean = Tensor(np.ones([64]), mindspore.float32)
>>> variance = Tensor(np.ones([64]), mindspore.float32)
>>> op = P.FusedBatchNorm()
>>> output = op(input_x, scale, bias, mean, variance)
"""
@prim_attr_register
def __init__(self, mode=0, epsilon=1e-5, momentum=0.1):
self.init_prim_io_names(inputs=['x', 'scale', 'b', 'mean', 'variance'],
outputs=['y', 'running_mean', 'running_variance', 'save_mean', 'save_inv_variance'])
self.mode = validator.check_integer('mode', mode, [0, 1], Rel.IN, self.name)
self.epsilon = validator.check_number_range('epsilon', epsilon, 0, 1, Rel.INC_RIGHT, self.name)
self.momentum = validator.check_number_range('momentum', momentum, 0, 1, Rel.INC_BOTH, self.name)
[docs]class BNTrainingReduce(PrimitiveWithInfer):
"""
reduce sum at axis [0, 2, 3].
Inputs:
- **x** (Tensor) - Tensor of shape :math:`(N, C)`.
Outputs:
- **sum** (Tensor) - Tensor of shape :math:`(C,)`.
- **square_sum** (Tensor) - Tensor of shape :math:`(C,)`.
"""
@prim_attr_register
def __init__(self):
self.init_prim_io_names(inputs=['x'], outputs=['sum', 'square_sum'])
def infer_shape(self, x_shape):
validator.check_integer("x rank", len(x_shape), 4, Rel.EQ, self.name)
return ([x_shape[1]], [x_shape[1]])
def infer_dtype(self, x_type):
return (x_type, x_type)
[docs]class BNTrainingUpdate(PrimitiveWithInfer):
"""
primitive operator of bn_training_update's register and info descriptor
"""
@prim_attr_register
def __init__(self, isRef=True, epsilon=1e-5, factor=0.1):
self.init_prim_io_names(inputs=['x', 'sum', 'square_sum', 'scale', 'b', 'mean', 'variance'],
outputs=['y', 'running_mean', 'running_variance', 'save_mean', 'save_inv_variance'])
#self.isRef = validator.check_integer('isRef', isRef, [0, 1], Rel.IN)
self.epsilon = validator.check_number_range('epsilon', epsilon, 0, 1, Rel.INC_RIGHT, 'BNTrainingUpdate')
self.factor = validator.check_number_range('factor', factor, 0, 1, Rel.INC_BOTH, 'BNTrainingUpdate')
def infer_shape(self, x, sum, square_sum, scale, b, mean, variance):
return (x, variance, variance, variance, variance)
def infer_dtype(self, x, sum, square_sum, scale, b, mean, variance):
return (x, variance, variance, variance, variance)
[docs]class BatchNorm(PrimitiveWithInfer):
r"""
Batch Normalization for input data and updated parameters.
Batch Normalization is widely used in convolutional neural networks. This operation
applies Batch Normalization over input to avoid internal covariate shift as described
in the paper `Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift <https://arxiv.org/abs/1502.03167>`_. It rescales and recenters the
features using a mini-batch of data and the learned parameters which can be described
in the following formula,
.. math::
y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta
where :math:`\gamma` is scale, :math:`\beta` is bias, :math:`\epsilon` is epsilon.
Args:
is_training (bool): If `is_training` is True, `mean` and `variance` are computed during training.
If `is_training` is False, they're loaded from checkpoint during inference. Default: False.
epsilon (float): A small value added for numerical stability. Default: 1e-5.
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, C)`.
- **scale** (Tensor) - Tensor of shape :math:`(C,)`.
- **bias** (Tensor) - Tensor of shape :math:`(C,)`.
- **mean** (Tensor) - Tensor of shape :math:`(C,)`.
- **variance** (Tensor) - Tensor of shape :math:`(C,)`.
Outputs:
Tuple of 5 Tensor, the normalized inputs and the updated parameters.
- **output_x** (Tensor) - The same type and shape as the input_x. The shape is :math:`(N, C)`.
- **updated_scale** (Tensor) - Tensor of shape :math:`(C,)`.
- **updated_bias** (Tensor) - Tensor of shape :math:`(C,)`.
- **reserve_space_1** (Tensor) - Tensor of shape :math:`(C,)`.
- **reserve_space_2** (Tensor) - Tensor of shape :math:`(C,)`.
Examples:
>>> input_x = Tensor(np.ones([128, 64, 32, 64]), mindspore.float32)
>>> scale = Tensor(np.ones([64]), mindspore.float32)
>>> bias = Tensor(np.ones([64]), mindspore.float32)
>>> mean = Tensor(np.ones([64]), mindspore.float32)
>>> variance = Tensor(np.ones([64]), mindspore.float32)
>>> batch_norm = P.BatchNorm()
>>> output = batch_norm(input_x, scale, bias, mean, variance)
"""
@prim_attr_register
def __init__(self, is_training=False, epsilon=1e-5):
validator.check_value_type('is_training', is_training, (bool,), self.name)
validator.check_number_range('epsilon', epsilon, 0, 1, Rel.INC_RIGHT, self.name)
self.add_prim_attr('data_format', "NCHW")
self.init_prim_io_names(inputs=['x', 'scale', 'offset', 'mean', 'variance'],
outputs=['y', 'batch_mean', 'batch_variance', 'reserve_space_1', 'reserve_space_2'])
def infer_shape(self, input_x, scale, bias, mean, variance):
validator.check_integer("scale rank", len(scale), 1, Rel.EQ, self.name)
validator.check("scale shape", scale, "bias shape", bias, Rel.EQ, self.name)
validator.check("scale shape[0]", scale[0], "input_x shape[1]", input_x[1], Rel.EQ, self.name)
if not self.is_training:
validator.check_integer("mean rank", len(mean), 1, Rel.EQ, self.name)
validator.check("mean shape", mean, "variance shape", variance, Rel.EQ, self.name)
validator.check("mean shape", mean, "scale shape", scale, Rel.EQ, self.name)
return (input_x, scale, scale, scale, scale)
def infer_dtype(self, input_x, scale, bias, mean, variance):
validator.check_tensor_type_same({"input_x": input_x}, [mstype.float16, mstype.float32], self.name)
args = {"scale": scale, "bias": bias}
validator.check_tensor_type_same(args, [mstype.float16, mstype.float32], self.name)
args_moving = {"mean": mean, "variance": variance}
if self.is_training:
valid_types = [mstype.tensor_type(mstype.float16), mstype.tensor_type(mstype.float32), None]
validator.check_type_same(args_moving, valid_types, self.name)
else:
args_moving = {"mean": mean, "variance": variance}
validator.check_tensor_type_same(args_moving, [mstype.float16, mstype.float32], self.name)
return (input_x, scale, bias, input_x, input_x)
[docs]class Conv2D(PrimitiveWithInfer):
r"""
2D convolution layer.
Applies a 2D convolution over an input tensor which is typically of shape :math:`(N, C_{in}, H_{in}, W_{in})`,
where :math:`N` is batch size and :math:`C_{in}` is channel number. For each batch of shape
:math:`(C_{in}, H_{in}, W_{in})`, the formula is defined as:
.. math::
out_j = \sum_{i=0}^{C_{in} - 1} ccor(W_{ij}, X_i) + b_j,
where :math:`ccor` is cross correlation operator, :math:`C_{in}` is the input channel number, :math:`j` ranges
from :math:`0` to :math:`C_{out} - 1`, :math:`W_{ij}` corresponds to :math:`i`-th channel of the :math:`j`-th
filter and :math:`out_{j}` corresponds to the :math:`j`-th channel of the output. :math:`W_{ij}` is a slice
of kernel and it has shape :math:`(\text{ks_h}, \text{ks_w})`, where :math:`\text{ks_h}` and
:math:`\text{ks_w}` are height and width of the convolution kernel. The full kernel has shape
:math:`(C_{out}, C_{in} // \text{group}, \text{ks_h}, \text{ks_w})`, where group is the group number
to split the input in the channel dimension.
If the 'pad_mode' is set to be "valid", the output height and width will be
:math:`\left \lfloor{1 + \frac{H_{in} + 2 \times \text{padding} - \text{ks_h} -
(\text{ks_h} - 1) \times (\text{dilation} - 1) }{\text{stride}}} \right \rfloor` and
:math:`\left \lfloor{1 + \frac{W_{in} + 2 \times \text{padding} - \text{ks_w} -
(\text{ks_w} - 1) \times (\text{dilation} - 1) }{\text{stride}}} \right \rfloor` respectively.
The first introduction can be found in paper `Gradient Based Learning Applied to Document Recognition
<http://vision.stanford.edu/cs598_spring07/papers/Lecun98.pdf>`_. More detailed introduction can be found here:
http://cs231n.github.io/convolutional-networks/.
Args:
out_channel (int): The dimension of the output.
kernel_size (Union[int, tuple[int]]): The kernel size of the 2D convolution.
mode (int): 0 Math convolutiuon, 1 cross-correlation convolution ,
2 deconvolution, 3 depthwise convolution. Default: 1.
pad_mode (str): "valid", "same", "pad" the mode to fill padding. Default: "valid".
pad (int): The pad value to fill. Default: 0.
stride (Union(int, tuple[int])): The stride to apply conv filter. Default: 1.
dilation (Union(int, tuple[int])): Specify the space to use between kernel elements. Default: 1.
group (int): Split input into groups. Default: 1.
Returns:
Tensor, the value that applied 2D convolution.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
- **weight** (Tensor) - Set size of kernel is :math:`(K_1, K_2)`, then the shape is
:math:`(C_{out}, C_{in}, K_1, K_2)`.
Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Examples:
>>> input = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32)
>>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32)
>>> conv2d = P.Conv2D(out_channel=32, kernel_size=3)
>>> conv2d(input, weight)
"""
@prim_attr_register
def __init__(self,
out_channel,
kernel_size,
mode=1,
pad_mode="valid",
pad=0,
stride=1,
dilation=1,
group=1):
"""init Conv2D"""
self.init_prim_io_names(inputs=['x', 'w'], outputs=['output'])
self.kernel_size = _check_positive_int_or_tuple('kernel_size', kernel_size, self.name)
self.stride = _check_positive_int_or_tuple('stride', stride, self.name, allow_four=True, ret_four=True)
self.add_prim_attr('stride', self.stride)
self.dilation = _check_positive_int_or_tuple('dilation', dilation, self.name, allow_four=True, ret_four=True)
self.add_prim_attr('dilation', self.dilation)
validator.check_value_type('pad', pad, (int,), self.name)
self.pad_mode = validator.check_string('pad_mode', pad_mode, ['valid', 'same', 'pad'], self.name)
self.pad = validator.check_pad_value_by_mode(pad_mode, pad, self.name)
if self.pad_mode == 'pad':
validator.check_integer('pad', self.pad, 0, Rel.GE, self.name)
self.mode = validator.check_integer('mode', mode, 1, Rel.EQ, self.name)
self.add_prim_attr('data_format', "NCHW")
self.out_channel = validator.check_integer('out_channel', out_channel, 0, Rel.GT, self.name)
self.group = validator.check_integer('group', group, 0, Rel.GT, self.name)
self.add_prim_attr('offset_a', 0)
def infer_shape(self, x_shape, w_shape):
validator.check_integer("weight rank", len(w_shape), 4, Rel.EQ, self.name)
validator.check_integer("x rank", len(x_shape), 4, Rel.EQ, self.name)
validator.check(f"x_shape[1] / group", x_shape[1] // self.group, "w_shape[1]", w_shape[1], Rel.EQ, self.name)
validator.check('out_channel', self.out_channel, 'w_shape[0]', w_shape[0], Rel.EQ, self.name)
validator.check('kernel_size', self.kernel_size, 'w_shape[2:4]', tuple(w_shape[2:4]), Rel.EQ, self.name)
kernel_size_h = w_shape[2]
kernel_size_w = w_shape[3]
stride_h = self.stride[2]
stride_w = self.stride[3]
dilation_h = self.dilation[2]
dilation_w = self.dilation[3]
if self.pad_mode == "valid":
h_out = math.ceil((x_shape[2] - dilation_h * (kernel_size_h - 1)) / stride_h)
w_out = math.ceil((x_shape[3] - dilation_w * (kernel_size_w - 1)) / stride_w)
pad_top, pad_bottom, pad_left, pad_right = 0, 0, 0, 0
elif self.pad_mode == "same":
h_out = math.ceil(x_shape[2] / stride_h)
w_out = math.ceil(x_shape[3] / stride_w)
pad_needed_h = max(0, (h_out - 1) * stride_h + dilation_h * (kernel_size_h - 1) + 1 - x_shape[2])
pad_top = math.floor(pad_needed_h / 2)
pad_bottom = pad_needed_h - pad_top
pad_needed_w = max(0, (w_out - 1) * stride_w + dilation_w * (kernel_size_w - 1) + 1 - x_shape[3])
pad_left = math.floor(pad_needed_w / 2)
pad_right = pad_needed_w - pad_left
elif self.pad_mode == 'pad':
pad_top, pad_bottom, pad_left, pad_right = self.pad, self.pad, self.pad, self.pad
h_out = 1 + (x_shape[2] + 2 * self.pad - kernel_size_h - (kernel_size_h - 1) * (dilation_h - 1)) \
/ stride_h
w_out = 1 + (x_shape[3] + 2 * self.pad - kernel_size_w - (kernel_size_w - 1) * (dilation_w - 1)) \
/ stride_w
h_out = math.floor(h_out)
w_out = math.floor(w_out)
self.pad_list = [pad_top, pad_bottom, pad_left, pad_right]
self.add_prim_attr('pad_list', (pad_top, pad_bottom, pad_left, pad_right))
out_channel = self.out_channel
out_shape = [x_shape[0], out_channel, h_out, w_out]
return out_shape
def infer_dtype(self, x_dtype, w_dtype):
args = {'x': x_dtype, 'w': w_dtype}
valid_types = [mstype.int8, mstype.int32, mstype.float16, mstype.float32]
validator.check_tensor_type_same(args, valid_types, self.name)
if x_dtype.element_type() == mstype.int8:
return mstype.tensor_type(mstype.int32)
return x_dtype
[docs]class DepthwiseConv2dNative(PrimitiveWithInfer):
r"""
Returns the depth-wise convolution value for the input.
Applies depthwise conv2d for the input, which will generate more channels with channel_multiplier.
Given an input tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})` where :math:`N` is the batch size and a
filter tensor with kernel size :math:`(ks_{h}, ks_{w})`, containing :math:`C_{in} * \text{channel_multiplier}`
convolutional filters of depth 1; it applies different filters to each input channel (channel_multiplier channels
for each with default value 1), then concatenates the results together. The output has
:math:`\text{in_channels} * \text{channel_multiplier}` channels.
Args:
channel_multiplier (int): The multipiler for the original output conv.
kernel_size (Union[int, tuple[int]]): The size of the conv kernel.
mode (int): 0 Math convolution, 1 cross-correlation convolution ,
2 deconvolution, 3 depthwise convolution. Default: 3.
pad_mode (str): "valid", "same", "pad" the mode to fill padding. Default: "valid".
pad (int): The pad value to fill. Default: 0.
stride (Union[int, tuple[int]]): The stride to apply conv filter. Default: 1.
dilation (Union[int, tuple[int]]): Specifies the dilation rate to use for dilated convolution. Default: 1.
group (int): Splits input into groups. Default: 1.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
- **weight** (Tensor) - Set size of kernel is :math:`(K_1, K_2)`, then the shape is
:math:`(K, C_{in}, K_1, K_2)`, `K` must be 1.
Outputs:
Tensor of shape :math:`(N, C_{in} * \text{channel_multiplier}, H_{out}, W_{out})`.
Examples:
>>> input = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32)
>>> weight = Tensor(np.ones([1, 32, 3, 3]), mindspore.float32)
>>> depthwise_conv2d = P.DepthwiseConv2dNative(channel_multiplier = 3, kernel_size = (3, 3))
>>> output = depthwise_conv2d(input, weight)
>>> assert output.shape == (10, 96, 30, 30)
"""
@prim_attr_register
def __init__(self,
channel_multiplier,
kernel_size,
mode=3,
pad_mode="valid",
pad=0,
stride=1,
dilation=1,
group=1):
"""init DepthwiseConv2dNative"""
self.init_prim_io_names(inputs=['x', 'w'], outputs=['output'])
self.kernel_size = _check_positive_int_or_tuple('kernel_size', kernel_size, self.name)
self.stride = _check_positive_int_or_tuple('stride', stride, self.name)
if self.stride[0] != self.stride[1]:
raise ValueError("The height and width of stride should be equal,"
f"but got height:{self.stride[0]}, width:{self.stride[1]}")
self.add_prim_attr('stride', (1, 1, self.stride[0], self.stride[1]))
self.dilation = _check_positive_int_or_tuple('dilation', dilation, self.name)
if self.dilation[0] != self.dilation[1]:
raise ValueError("The height and width of dilation should be equal,"
f"but got height:{self.dilation[0]}, width:{self.dilation[1]}")
self.add_prim_attr('dilation', (1, 1, self.dilation[0], self.dilation[1]))
validator.check_value_type('pad', pad, (int,), self.name)
self.pad_mode = validator.check_string('pad_mode', pad_mode, ['valid', 'same', 'pad'], self.name)
self.pad = validator.check_pad_value_by_mode(pad_mode, pad, self.name)
self.mode = validator.check_integer("mode", mode, 3, Rel.EQ, self.name)
self.add_prim_attr('data_format', "NCHW")
self.channel_multiplier = validator.check_integer("channel_multiplier", channel_multiplier, 0, Rel.GT,
self.name)
self.group = validator.check_integer("group", group, 0, Rel.GT, self.name)
self.add_prim_attr('offset_a', 0)
def infer_shape(self, x_shape, w_shape):
validator.check_integer("weight rank", len(w_shape), 4, Rel.EQ, self.name)
validator.check_integer("x rank", len(x_shape), 4, Rel.EQ, self.name)
validator.check("x_shape[1]", x_shape[1], "w_shape[1]", w_shape[1], Rel.EQ, self.name)
validator.check('kernel_size', self.kernel_size, 'w_shape[2:4]', tuple(w_shape[2:4]), Rel.EQ, self.name)
kernel_size_n, _, kernel_size_h, kernel_size_w = w_shape
_, _, stride_h, stride_w = self.stride
_, _, dilation_h, dilation_w = self.dilation
if kernel_size_n != 1:
raise ValueError(f"The batch of input weight should be 1, but got {kernel_size_n}")
if self.pad_mode == "valid":
h_out = math.ceil((x_shape[2] - dilation_h * (kernel_size_h - 1)) / stride_h)
w_out = math.ceil((x_shape[3] - dilation_w * (kernel_size_w - 1)) / stride_w)
pad_top, pad_bottom, pad_left, pad_right = 0, 0, 0, 0
elif self.pad_mode == "same":
h_out = math.ceil(x_shape[2] / stride_h)
w_out = math.ceil(x_shape[3] / stride_w)
pad_needed_h = max(0, (h_out - 1) * stride_h + dilation_h * (kernel_size_h - 1) + 1 - x_shape[2])
pad_top = math.floor(pad_needed_h / 2)
pad_bottom = pad_needed_h - pad_top
pad_needed_w = max(0, (w_out - 1) * stride_w + dilation_w * (kernel_size_w - 1) + 1 - x_shape[3])
pad_left = math.floor(pad_needed_w / 2)
pad_right = pad_needed_w - pad_left
elif self.pad_mode == 'pad':
pad_top, pad_bottom, pad_left, pad_right = self.pad, self.pad, self.pad, self.pad
h_out = 1 + (x_shape[2] + 2 * self.pad - kernel_size_h - (kernel_size_h - 1) * (dilation_h - 1)) \
/ stride_h
w_out = 1 + (x_shape[3] + 2 * self.pad - kernel_size_w - (kernel_size_w - 1) * (dilation_w - 1)) \
/ stride_w
h_out = math.floor(h_out)
w_out = math.floor(w_out)
self.pad_list = (pad_top, pad_bottom, pad_left, pad_right)
self.add_prim_attr('pads', self.pad_list)
out_channel = self.channel_multiplier * x_shape[1]
out_shape = [x_shape[0], out_channel, h_out, w_out]
return out_shape
def infer_dtype(self, x_dtype, w_dtype):
args = {'x': x_dtype, 'w': w_dtype}
validator.check_tensor_type_same(args, mstype.number_type, self.name)
return x_dtype
class _Pool(PrimitiveWithInfer):
r"""
Performs max/avg pooling operation.
Args:
ksize (Union[int, tuple[int]]): The size of the kernel, that should be a tuple
of two `int` for height and width. Default: 1.
strides (Union[int, tuple[int]]): The stride of the window, that should be
a tuple of two `int` for height and width. Default: 1.
padding (str): The optional values for pad mode, is "same" or "valid", not case sensitive.
Default: "valid".
"""
@prim_attr_register
def __init__(self, ksize=1, strides=1, padding="valid"):
self.init_prim_io_names(inputs=['x'], outputs=['output'])
validator.check_value_type('ksize', ksize, [int, tuple], self.name)
validator.check_value_type('strides', strides, [int, tuple], self.name)
self.padding = validator.check_string('padding', padding.upper(), ['VALID', 'SAME'], self.name)
self.add_prim_attr("padding", self.padding)
self.is_maxpoolwithargmax = (self.name == "MaxPoolWithArgmax")
if not self.is_maxpoolwithargmax:
self.add_prim_attr('data_format', "NCHW")
self.ksize = _check_positive_int_or_tuple("ksize", ksize, self.name, allow_four=False, ret_four=True)
if self.is_maxpoolwithargmax:
self.ksize = (1, self.ksize[-2], self.ksize[-1], 1)
self.add_prim_attr("ksize", self.ksize)
self.strides = _check_positive_int_or_tuple("strides", strides, self.name, allow_four=False, ret_four=True)
if self.is_maxpoolwithargmax:
self.strides = (1, self.strides[-2], self.strides[-1], 1)
self.add_prim_attr("strides", self.strides)
def infer_shape(self, x_shape):
validator.check_integer("x rank", len(x_shape), 4, Rel.EQ, self.name)
batch, channel, input_h, input_w = x_shape
if self.is_maxpoolwithargmax:
_, kernel_h, kernel_w, _ = self.ksize
_, stride_h, stride_w, _ = self.strides
else:
_, _, kernel_h, kernel_w = self.ksize
_, _, stride_h, stride_w = self.strides
if self.padding == "VALID":
out_h = math.ceil((input_h - (kernel_h - 1)) / stride_h)
out_w = math.ceil((input_w - (kernel_w - 1)) / stride_w)
elif self.padding == "SAME":
out_h = math.ceil(input_h / stride_h)
out_w = math.ceil(input_w / stride_w)
out_shape = [batch, channel, out_h, out_w]
for shape_value in out_shape:
if shape_value <= 0:
raise ValueError(f"For '{self.name}' The kernel size is not valid, "
f"please check it if is larger than data's shape size.")
return out_shape
def infer_dtype(self, x_dtype):
validator.check_subclass("input", x_dtype, mstype.tensor, self.name)
return x_dtype
[docs]class MaxPool(_Pool):
r"""
Max pooling operation.
Applies a 2D max pooling over an input Tensor which can be regarded as a composition of 2D planes.
Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, MaxPool outputs
regional maximum in the :math:`(H_{in}, W_{in})`-dimension. Given kernel size
:math:`ks = (h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1)`, the operation is as follows.
.. math::
\text{output}(N_i, C_j, h, w) = \max_{m=0, \ldots, h_{ker}-1} \max_{n=0, \ldots, w_{ker}-1}
\text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n)
Args:
ksize (Union[int, tuple[int]]): The size of kernel used to take the maximum value,
is an int number that represents height and width are both ksize, or a tuple
of two int numbers that represent height and width respectively. Default: 1.
strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
the height and width of movement are both strides, or a tuple of two int numbers that
represent height and width of movement respectively. Default: 1.
padding (str): The optional values for pad mode, is "same" or "valid", not case sensitive.
Default: "valid".
- same: Adopts the way of completion. Output height and width will be the same as
the input. Total number of padding will be calculated for horizontal and vertical
direction and evenly distributed to top and bottom, left and right if possible.
Otherwise, the last extra padding will be done from the bottom and the right side.
- valid: Adopts the way of discarding. The possibly largest height and width of output
will be return without padding. Extra pixels will be discarded.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
Outputs:
Tensor, with shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Examples:
>>> input_tensor = Tensor(np.arange(1 * 3 * 3 * 4).reshape((1, 3, 3, 4)), mindspore.float32)
>>> maxpool_op = P.MaxPool(padding="VALID", ksize=2, strides=1)
>>> output_tensor = maxpool_op(input_tensor)
"""
@prim_attr_register
def __init__(self, ksize=1, strides=1, padding="valid"):
super(MaxPool, self).__init__(ksize, strides, padding)
[docs]class MaxPoolWithArgmax(_Pool):
r"""
Performs max pooling on the input Tensor and return both max values and indices.
Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, MaxPool outputs
regional maximum in the :math:`(H_{in}, W_{in})`-dimension. Given kernel size
:math:`ks = (h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1)`, the operation is as follows.
.. math::
\text{output}(N_i, C_j, h, w) = \max_{m=0, \ldots, h_{ker}-1} \max_{n=0, \ldots, w_{ker}-1}
\text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n)
Args:
ksize (Union[int, tuple[int]]): The size of kernel used to take the maximum value and arg value,
is an int number that represents height and width are both ksize, or a tuple of
two int numbers that represent height and width respectively. Default: 1.
strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
the height and width of movement are both strides, or a tuple of two int numbers that
represent height and width of movement respectively. Default: 1.
padding (str): The optional values for pad mode, is "same" or "valid", not case sensitive.
Default: "valid".
- same: Adopts the way of completion. Output height and width will be the same as
the input. Total number of padding will be calculated for horizontal and vertical
direction and evenly distributed to top and bottom, left and right if possible.
Otherwise, the last extra padding will be done from the bottom and the right side.
- valid: Adopts the way of discarding. The possibly largest height and width of output
will be return without padding. Extra pixels will be discarded.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
Outputs:
Tuple of 2 Tensor, the maxpool result and where max values from.
- **output** (Tensor) - Maxpooling result, with shape :math:`(N, C_{out}, H_{out}, W_{out})`.
- **mask** (Tensor) - Max values' index represented by the mask.
Examples:
>>> input_tensor = Tensor(np.arange(1 * 3 * 3 * 4).reshape((1, 3, 3, 4)), mindspore.float32)
>>> maxpool_arg_op = P.MaxPoolWithArgmax(padding="VALID", ksize=2, strides=1)
>>> output_tensor, argmax = maxpool_arg_op(input_tensor)
"""
def __init__(self, ksize=1, strides=1, padding="valid"):
super(MaxPoolWithArgmax, self).__init__(ksize, strides, padding)
self.is_tbe = context.get_context("device_target") == "Ascend"
def infer_shape(self, x_shape):
out_shape = _Pool.infer_shape(self, x_shape)
_, _, out_h, out_w = out_shape
_, kernel_h, kernel_w, _ = self.ksize
argmax_shape = []
if self.is_tbe:
for i in range(4):
if i == 2:
dim = kernel_h * kernel_w
argmax_shape.append(dim)
elif i == 3:
dim = math.ceil(out_h * out_w / 16) + 1
argmax_shape.append(dim)
else:
argmax_shape.append(x_shape[i])
else:
argmax_shape = out_shape
return out_shape, argmax_shape
def infer_dtype(self, x_dtype):
out_dtype = x_dtype
validator.check_tensor_type_same({"x": x_dtype}, (mstype.float16, mstype.float32), self.name)
argmax_dtype = mstype.uint16
return out_dtype, argmax_dtype
[docs]class AvgPool(_Pool):
r"""
Average pooling operation.
Applies a 2D average pooling over an input Tensor which can be regarded as a composition of 2D input planes.
Typically the input is of shape :math:`(N_{in}, C_{in}, H_{in}, W_{in})`, AvgPool2d outputs
regional average in the :math:`(H_{in}, W_{in})`-dimension. Given kernel size
:math:`ks = (h_{ker}, w_{ker})` and stride :math:`s = (s_0, s_1)`, the operation is as follows.
.. math::
\text{output}(N_i, C_j, h, w) = \frac{1}{h_{ker} * w_{ker}} \sum_{m=0}^{h_{ker}-1} \sum_{n=0}^{w_{ker}-1}
\text{input}(N_i, C_j, s_0 \times h + m, s_1 \times w + n)
Args:
ksize (Union[int, tuple[int]]): The size of kernel used to take the average value,
is an int number that represents height and width are both ksize, or a tuple
of two int numbers that represent height and width respectively. Default: 1.
strides (Union[int, tuple[int]]): The distance of kernel moving, an int number that represents
the height and width of movement are both strides, or a tuple of two int numbers that
represent height and width of movement respectively. Default: 1.
padding (str): The optional values for pad mode, is "same" or "valid", not case sensitive.
Default: "valid".
- same: Adopts the way of completion. Output height and width will be the same as
the input. Total number of padding will be calculated for horizontal and vertical
direction and evenly distributed to top and bottom, left and right if possible.
Otherwise, the last extra padding will be done from the bottom and the right side.
- valid: Adopts the way of discarding. The possibly largest height and width of output
will be return without padding. Extra pixels will be discarded.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
Outputs:
Tensor, with shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore.ops import operations as P
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.avgpool_op = P.AvgPool(padding="VALID", ksize=2, strides=1)
>>>
>>> def construct(self, x):
>>> result = self.avgpool_op(x)
>>> return result
>>>
>>> input_x = Tensor(np.arange(1 * 3 * 3 * 4).reshape(1, 3, 3, 4), mindspore.float32)
>>> net = Net()
>>> result = net(input_x)
[[[[ 2.5 3.5 4.5]
[ 6.5 7.5 8.5]]
[[ 14.5 15.5 16.5]
[ 18.5 19.5 20.5]]
[[ 26.5 27.5 28.5]
[ 30.5 31.5 32.5]]]]
"""
@prim_attr_register
def __init__(self, ksize=1, strides=1, padding="valid"):
if context.get_context("device_target") == "GPU":
self.target = "GPU"
else:
self.target = "OTHER"
super(AvgPool, self).__init__(ksize, strides, padding)
[docs]class BiasAdd(PrimitiveWithInfer):
r"""
Returns sum of input and bias tensor.
Adds the 1-D bias tensor to the input tensor, and broadcasts the shape on all axis
except for the channel axis.
Inputs:
- **input_x** (Tensor) - Input value, with shape :math:`(N, C)` or :math:`(N, C, H, W)`.
- **bias** (Tensor) - Bias value, with shape :math:`(C)`.
Outputs:
Tensor, with the same shape and type as `input_x`.
Examples:
>>> input_x = Tensor(np.arange(6).reshape((2, 3)), mindspore.float32)
>>> bias = Tensor(np.random.random(3).reshape((3,)), mindspore.float32)
>>> bias_add = P.BiasAdd()
>>> bias_add(input_x, bias)
"""
@prim_attr_register
def __init__(self):
self.init_prim_io_names(inputs=['x', 'b'], outputs=['output'])
self.add_prim_attr('data_format', 'NCHW')
def infer_shape(self, x_shape, b_shape):
validator.check_integer("x rank", len(x_shape), 2, Rel.GE, self.name)
validator.check_integer("bias rank", len(b_shape), 1, Rel.EQ, self.name)
validator.check("b_shape[0]", b_shape[0], "x_shape[1]", x_shape[1], Rel.EQ, self.name)
return x_shape
def infer_dtype(self, x_type, b_type):
args = {"input_x": x_type, "bias": b_type}
valid_types = (mstype.int8, mstype.int32, mstype.float16, mstype.float32)
validator.check_tensor_type_same(args, valid_types, self.name)
return x_type
[docs]class TopK(PrimitiveWithInfer):
"""
Finds values and indices of the `k` largest entries along the last dimension.
Args:
sorted (bool): If true, the resulting elements will
be sorted by the values in descending order. Default: False.
Inputs:
- **input_x** (Tensor) - Input to be computed.
- **k** (int) - Number of top elements to be computed along the last dimension, constant input is needed.
Outputs:
Tuple of 2 Tensor, the values and the indices.
- **values** (Tensor) - The `k` largest elements along each last dimensional slice.
- **indices** (Tensor) - The indices of values within the last dimension of input.
Examples:
>>> topk = P.TopK(sorted=True)
>>> input_x = Tensor([1, 2, 3, 4, 5], mindspore.float16)
>>> k = 3
>>> values, indices = topk(input_x, k)
>>> assert values == Tensor(np.array([5, 4, 3]), mstype.float16)
>>> assert indices == Tensor(np.array([4, 3, 2]), mstype.int32)
"""
@prim_attr_register
def __init__(self, sorted=False):
validator.check_value_type("sorted", sorted, [bool], self.name)
self.init_prim_io_names(inputs=['input', 'k'],
outputs=['values', 'indices'])
def __infer__(self, input_x, k):
x_dtype = input_x['dtype']
valid_types = (mstype.int32, mstype.float16, mstype.float32)
validator.check_tensor_type_same({'x': x_dtype}, valid_types, self.name)
k_v = k['value']
validator.check_value_type('k', k_v, (int,), self.name)
x_shape = list(input_x['shape'])
ndim = len(x_shape) - 1
x_shape[ndim] = k_v
return {'shape': (x_shape, x_shape),
'dtype': (x_dtype, mstype.int32),
'value': None}
[docs]class SoftmaxCrossEntropyWithLogits(PrimitiveWithInfer):
r"""
Gets the softmax cross-entropy value between logits and labels which shoule be one-hot encoding.
Note:
Sets input logits as `X`, input label as `Y`, output as `loss`. Then,
.. math::
p_{ij} = softmax(X_{ij}) = \frac{exp(x_i)}{\sum_{j = 0}^{N-1}\exp(x_j)}
.. math::
loss_{ij} = -\sum_j{Y_{ij} * ln(p_{ij})}
Inputs:
- **logits** (Tensor) - Input logits, with shape :math:`(N, C)`.
- **labels** (Tensor) - Ground truth labels, with shape :math:`(N, C)`.
Outputs:
Tuple of 2 Tensor, the loss shape is `(N,)`, and the dlogits with the same shape as `logits`.
Examples:
>>> logits = Tensor([[2, 4, 1, 4, 5], [2, 1, 2, 4, 3]], mindspore.float32)
>>> labels = Tensor([[0, 0, 0, 0, 1], [0, 0, 0, 1, 0]], mindspore.float32)
>>> softmax_cross = P.SoftmaxCrossEntropyWithLogits()
>>> loss, backprop = softmax_cross(logits, labels)
([0.5899297, 0.52374405], [[0.02760027, 0.20393994, 0.01015357, 0.20393994, -0.44563377],
[0.08015892, 0.02948882, 0.08015892, -0.4077012, 0.21789455]])
"""
@prim_attr_register
def __init__(self):
pass
def infer_shape(self, logits_shape, labels_shape):
validator.check("logits_shape", logits_shape, "labels_shape", labels_shape, Rel.EQ, self.name)
loss_shape = [logits_shape[0]]
dlogits_shape = logits_shape
return (loss_shape, dlogits_shape)
def infer_dtype(self, logits_type, labels_type):
args = {"logits": logits_type, "labels": labels_type}
validator.check_tensor_type_same(args, (mstype.float16, mstype.float32), self.name)
return (logits_type, logits_type)
[docs]class SparseSoftmaxCrossEntropyWithLogits(PrimitiveWithInfer):
r"""
Computes the softmax cross-entropy value between logits and sparse encoding labels.
Note:
Sets input logits as `X`, input label as `Y`, output as `loss`. Then,
.. math::
p_{ij} = softmax(X_{ij}) = \frac{exp(x_i)}{\sum_{j = 0}^{N-1}\exp(x_j)}
.. math::
loss_{ij} = \begin{cases} -ln(p_{ij}), &j = y_i \cr -ln(1 - p_{ij}), & j \neq y_i \end{cases}
.. math::
loss = \sum_{ij} loss_{ij}
Args:
is_grad (bool): If it's true, this operation returns the computed gradient. Default: False.
Inputs:
- **logits** (Tensor) - Input logits, with shape :math:`(N, C)`.
- **labels** (Tensor) - Ground truth labels, with shape :math:`(N)`.
Outputs:
Tensor, if `is_grad` is False, the output tensor is the value of loss which is a scalar tensor;
if `is_grad` is True, the output tensor is the gradient of input with the same shape as `logits`.
Examples:
Please refer to the usage in nn.SoftmaxCrossEntropyWithLogits source code.
"""
@prim_attr_register
def __init__(self, is_grad=False):
self.init_prim_io_names(inputs=['features', 'labels'], outputs=['output'])
self.is_grad = is_grad
self.add_prim_attr('sens', 1.0)
def infer_shape(self, logits_shape, labels_shape):
validator.check("logits_shape[0]", logits_shape[0], "labels_shape[0]", labels_shape[0], Rel.EQ, self.name)
loss_shape = []
if self.is_grad:
return logits_shape
return loss_shape
def infer_dtype(self, logits_type, labels_type):
validator.check_tensor_type_same({"logits": logits_type}, (mstype.float16, mstype.float32), self.name)
validator.check_tensor_type_same({"labels": labels_type}, (mstype.int32, mstype.int64), self.name)
return logits_type
[docs]class ApplyMomentum(PrimitiveWithInfer):
"""
Optimizer that implements the Momentum algorithm.
Refer to the paper `On the importance of initialization and momentum in deep
learning <https://dl.acm.org/doi/10.5555/3042817.3043064>`_ for more details.
Args:
use_locking (bool): Enable a lock to protect the update of variable and accumlation tensors. Default: False.
use_nesterov (bool): Enable Nesterov momentum. Default: False.
gradient_scale (float): The scale of the gradient. Default: 1.0.
Inputs:
- **variable** (Tensor) - Weights to be updated.
- **accumulation** (Tensor) - Accumulated gradient value by moment weight.
- **learning_rate** (float) - Learning rate.
- **gradient** (Tensor) - Gradients.
- **momentum** (float) - Momentum.
Outputs:
Tensor, parameters to be updated.
Examples:
Please refer to the usage in nn.ApplyMomentum.
"""
__mindspore_signature__ = (
('variable', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('accumulation', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T),
('learning_rate', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T1),
('gradient', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('momentum', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T2)
)
@prim_attr_register
def __init__(self, use_nesterov=False, use_locking=False, gradient_scale=1.0):
self.init_prim_io_names(inputs=['variable', 'accumulation', 'learning_rate', 'gradient', 'momentum'],
outputs=['output'])
self.is_tbe = context.get_context("device_target") == "Ascend"
def infer_shape(self, v_shape, a_shape, l_shape, g_shape, m_shape):
if self.is_tbe:
return v_shape, v_shape
return v_shape
def infer_dtype(self, v_dtype, a_dtype, l_dtype, g_dtype, m_dtype):
valid_types = [mstype.float16, mstype.float32, mstype.float64]
if v_dtype != mstype.type_refkey and a_dtype != mstype.type_refkey:
validator.check_tensor_type_same({"v": v_dtype}, valid_types, self.name)
validator.check_tensor_type_same({"a": a_dtype}, valid_types, self.name)
validator.check_scalar_or_tensor_type_same({"l_dtype": l_dtype}, valid_types, self.name)
validator.check_scalar_or_tensor_type_same({"g_dtype": g_dtype}, valid_types, self.name)
validator.check_scalar_or_tensor_type_same({"m_dtype": m_dtype}, valid_types, self.name)
if self.is_tbe:
return g_dtype, g_dtype
return g_dtype
[docs]class SmoothL1Loss(PrimitiveWithInfer):
r"""
Computes smooth L1 loss, a robust L1 loss.
SmoothL1Loss is a Loss similar to MSELoss but less sensitive to outliers as described in the
`Fast R-CNN <https://arxiv.org/abs/1504.08083>`_ by Ross Girshick.
Note:
Sets input prediction as `X`, input target as `Y`, output as `loss`. Then,
.. math::
\text{SmoothL1Loss} = \begin{cases}0.5x^{2}, &if \left |x \right |\leq \text{sigma} \cr
\left |x \right|-0.5, &\text{otherwise}\end{cases}
Args:
sigma (float): A parameter used to control the point where the function will change from
quadratic to linear. Default: 1.0.
Inputs:
- **prediction** (Tensor) - Predict data.
- **target** (Tensor) - Ground truth data, with the same type and shape as `prediction`.
Outputs:
Tensor, with the same type and shape as `prediction`.
Examples:
>>> loss = P.SmoothL1Loss()
>>> input_data = Tensor(np.array([1, 2, 3]), mindspore.float32)
>>> target_data = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> loss(input_data, target_data)
[0, 0, 0.5]
"""
@prim_attr_register
def __init__(self, sigma=1.0):
validator.check_value_type('sigma', sigma, [float], self.name)
validator.check('sigma', sigma, '', 0, Rel.GT, self.name)
self.init_prim_io_names(inputs=['prediction', 'target'], outputs=['output'])
def infer_shape(self, prediction, target):
validator.check('prediction shape', prediction, 'target shape', target, Rel.EQ, self.name)
return prediction
def infer_dtype(self, prediction, target):
args = {"prediction": prediction, "target": target}
validator.check_tensor_type_same(args, (mstype.float16, mstype.float32), self.name)
return prediction
[docs]class L2Loss(PrimitiveWithInfer):
"""
Calculates half of the L2 norm of a tensor without using the `sqrt`.
Set `input_x` as x and output as loss.
.. math::
loss = sum(x ** 2) / 2
Inputs:
- **input_x** (Tensor) - A input Tensor.
Outputs:
Tensor. Has the same dtype as `input_x`. The output tensor is the value of loss which is a scalar tensor.
Examples
>>> input_x = Tensor(np.array([1, 2, 3]), mindspore.float16)
>>> l2_loss = P.L2Loss()
>>> l2_loss(input_x)
7.0
"""
@prim_attr_register
def __init__(self):
"""init L2Loss"""
def infer_shape(self, input_x):
loss_shape = []
return loss_shape
def infer_dtype(self, x_type):
validator.check_subclass("x_type", x_type, mstype.tensor, self.name)
valid_types = [mstype.float16, mstype.float32]
validator.check_tensor_type_same({'x_type': x_type}, valid_types, self.name)
return x_type
[docs]class SGD(PrimitiveWithInfer):
"""
Computes stochastic gradient descent (optionally with momentum).
Nesterov momentum is based on the formula from On the importance of
initialization and momentum in deep learning.
Note:
For details, please refer to `nn.SGD` source code.
Args:
dampening (float): The dampening for momentum. Default: 0.0.
weight_decay (float): Weight decay (L2 penalty). Default: 0.0.
nesterov (bool): Enable Nesterov momentum. Default: False.
Inputs:
- **parameters** (Tensor) - Parameters to be updated. Their data type can be list or tuple.
- **gradient** (Tensor) - Gradients.
- **learning_rate** (Tensor) - Learning rate. Must be float value. e.g. Tensor(0.1, mindspore.float32).
- **accum** (Tensor) - Accum(velocity) to be updated.
- **momentum** (Tensor) - Momentum. e.g. Tensor(0.1, mindspore.float32).
- **stat** (Tensor) - States to be updated with the same shape as gradient.
Outputs:
Tensor, parameters to be updated.
Examples:
>>> sgd = P.SGD()
>>> parameters = Tensor(np.array([2, -0.5, 1.7, 4]), mindspore.float32)
>>> gradient = Tensor(np.array([1, -1, 0.5, 2]), mindspore.float32)
>>> learning_rate = Tensor(0.01, mindspore.float32)
>>> accum = Tensor(np.array([0.1, 0.3, -0.2, -0.1]), mindspore.float32)
>>> momentum = Tensor(0.1, mindspore.float32)
>>> stat = Tensor(np.array([1.5, -0.3, 0.2, -0.7]), mindspore.float32)
>>> result = sgd(parameters, gradient, learning_rate, accum, momentum, stat)
"""
@prim_attr_register
def __init__(self, dampening=0.0, weight_decay=0.0, nesterov=False):
validator.check_value_type("nesterov", nesterov, [bool], self.name)
self.init_prim_io_names(inputs=['parameters', 'gradient', 'learning_rate', 'accum', 'momentum', 'stat'],
outputs=['output'])
def infer_shape(self, parameters_shape, gradient_shape, learning_rate_shape,
accum_shape, momentum_shape, stat_shape):
validator.check_integer(f'parameters rank', len(parameters_shape), 0, Rel.GT, self.name)
validator.check_integer(f'gradient rank', len(gradient_shape), 0, Rel.GE, self.name)
validator.check_integer(f'learning rate rank', len(learning_rate_shape), 0, Rel.GE, self.name)
validator.check_integer(f'accumulation rank', len(accum_shape), 0, Rel.GT, self.name)
validator.check_integer(f'momentum rank', len(momentum_shape), 0, Rel.GE, self.name)
validator.check_integer(f'stat rank', len(stat_shape), 0, Rel.GE, self.name)
validator.check("gradient shape", gradient_shape, "stat shape", stat_shape, Rel.EQ, self.name)
return parameters_shape
def infer_dtype(self, parameters_dtype, gradient_dtype, learning_rate_dtype,
accum_dtype, momentum_dtype, stat_dtype):
valid_types = [mstype.float16, mstype.float32]
validator.check_tensor_type_same({"parameters": parameters_dtype}, valid_types, self.name)
validator.check_tensor_type_same({"gradient": gradient_dtype}, valid_types, self.name)
validator.check_tensor_type_same({"learning_rate": learning_rate_dtype}, valid_types, self.name)
validator.check_tensor_type_same({"accum": accum_dtype}, valid_types, self.name)
validator.check_tensor_type_same({"momentum": momentum_dtype}, valid_types, self.name)
validator.check_tensor_type_same({"stat": stat_dtype}, valid_types, self.name)
return parameters_dtype
[docs]class ApplyRMSProp(PrimitiveWithInfer):
"""
Optimizer that implements the Root Mean Square prop(RMSProp) algorithm.
Please refer to the usage in source code of `nn.RMSProp`.
Note:
Update `var` according to the RMSProp algorithm.
.. math::
s_{t} = \\rho s_{t-1} + (1 - \\rho)(\\nabla Q_{i}(w))^2
.. math::
m_{t} = \\beta m_{t-1} + \\frac{\\eta} {\\sqrt{s_{t} + \\epsilon}} \\nabla Q_{i}(w)
.. math::
w = w - m_{t}
where, :math:`w` represents `var`, which will be updated.
:math:`s_{t}` represents `mean_square`, :math:`s_{t-1}` is the last momentent of :math:`s_{t}`,
:math:`m_{t}` represents `moment`, :math:`m_{t-1}` is the last momentent of :math:`m_{t}`.
:math:`\\rho` represents `decay`. :math:`\\beta` is the momentum term, represents `momentum`.
:math:`\\epsilon` is a smoothing term to avoid division by zero, represents `epsilon`.
:math:`\\eta` represents `learning_rate`. :math:`\\nabla Q_{i}(w)` represents `grad`.
Args:
use_locking (bool): Enable a lock to protect the update of variable tensors. Default: False.
Inputs:
- **var** (Tensor) - Weights to be update.
- **mean_square** (Tensor) - Mean square gradients, must have the same type as `var`.
- **moment** (Tensor) - Delta of `var`, must have the same type as `var`.
- **learning_rate** (Union[Number, Tensor]) - Learning rate.
- **grad** (Tensor) - Gradients, must have the same type as `var`.
- **decay** (float) - Decay rate. Only constant value is allowed.
- **momentum** (float) - Momentum. Only constant value is allowed.
- **epsilon** (float) - Ridge term. Only constant value is allowed.
Outputs:
Tensor, parameters to be update.
Examples:
>>> apply_rms = P.ApplyRMSProp()
>>> input_x = Tensor(1., mindspore.float32)
>>> mean_square = Tensor(2., mindspore.float32)
>>> moment = Tensor(1., mindspore.float32)
>>> grad = Tensor(2., mindspore.float32 )
>>> learning_rate = Tensor(0.9, mindspore.float32)
>>> decay = 0.0
>>> momentum = 1e-10
>>> epsilon = 0.001
>>> result = apply_rms(input_x, mean_square, moment, grad, learning_rate, decay, momentum, epsilon)
(-2.9977674, 0.80999994, 1.9987665)
"""
@prim_attr_register
def __init__(self, use_locking=False):
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
self.init_prim_io_names(inputs=['var', 'mean_square', 'moment', 'learning_rate', 'grad',
'rho', 'momentum', 'epsilon'], outputs=['output'])
self.is_ge = context.get_context("enable_ge")
self.is_d = context.get_context("device_target") == "Ascend"
def infer_shape(self, var_shape, mean_square_shape, moment_shape, learning_rate_shape, grad_shape, decay_shape,
momentum_shape, epsilon_shape):
validator.check("var_shape", var_shape, "mean_square_shape", mean_square_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "moment_shape", moment_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name)
if not self.is_ge and self.is_d:
return var_shape, var_shape, var_shape
return var_shape
def infer_dtype(self, var_dtype, mean_square_dtype, moment_dtype, learning_rate_dtype, grad_dtype, decay_dtype,
momentum_dtype, epsilon_dtype):
args = {"var": var_dtype, "mean_square": mean_square_dtype, "moment": moment_dtype, "grad": grad_dtype}
validator.check_tensor_type_same(args, mstype.number_type, self.name)
valid_types = [mstype.float16, mstype.float32]
args_decay = {"decay": decay_dtype, 'momentum': momentum_dtype, "epsilon": epsilon_dtype}
validator.check_type_same(args_decay, valid_types, self.name)
args_lr = {"learning_rate": learning_rate_dtype, "decay": decay_dtype}
validator.check_scalar_or_tensor_type_same(args_lr, valid_types, self.name, allow_mix=True)
if not self.is_ge and self.is_d:
return var_dtype, var_dtype, var_dtype
return var_dtype
def infer_value(self, var, mean_square, moment, learning_rate, grad, decay, momentum, epsilon):
if decay is None or momentum is None or epsilon is None:
raise ValueError(f"For {self.name}, decay, momentum, epsilon must be const.")
[docs]class ApplyCenteredRMSProp(PrimitiveWithInfer):
"""
Optimizer that implements the centered RMSProp algorithm.
Please refer to the usage in source code of `nn.RMSProp`.
Note:
Update `var` according to the centered RMSProp algorithm.
.. math::
g_{t} = \\rho g_{t-1} + (1 - \\rho)\\nabla Q_{i}(w)
.. math::
s_{t} = \\rho s_{t-1} + (1 - \\rho)(\\nabla Q_{i}(w))^2
.. math::
m_{t} = \\beta m_{t-1} + \\frac{\\eta} {\\sqrt{s_{t} - g_{t}^2 + \\epsilon}} \\nabla Q_{i}(w)
.. math::
w = w - m_{t}
where, :math:`w` represents `var`, which will be updated.
:math:`g_{t}` represents `mean_gradient`, :math:`g_{t-1}` is the last momentent of :math:`g_{t}`.
:math:`s_{t}` represents `mean_square`, :math:`s_{t-1}` is the last momentent of :math:`s_{t}`,
:math:`m_{t}` represents `moment`, :math:`m_{t-1}` is the last momentent of :math:`m_{t}`.
:math:`\\rho` represents `decay`. :math:`\\beta` is the momentum term, represents `momentum`.
:math:`\\epsilon` is a smoothing term to avoid division by zero, represents `epsilon`.
:math:`\\eta` represents `learning_rate`. :math:`\\nabla Q_{i}(w)` represents `grad`.
Args:
use_locking (bool): Enable a lock to protect the update of variable tensors. Default: False.
Inputs:
- **var** (Tensor) - Weights to be update.
- **mean_gradient** (Tensor) - Mean gradients, must have the same type as `var`.
- **mean_square** (Tensor) - Mean square gradients, must have the same type as `var`.
- **moment** (Tensor) - Delta of `var`, must have the same type as `var`.
- **grad** (Tensor) - Gradients, must have the same type as `var`.
- **learning_rate** (Union[Number, Tensor]) - Learning rate.
- **decay** (float) - Decay rate.
- **momentum** (float) - Momentum.
- **epsilon** (float) - Ridge term.
Outputs:
Tensor, parameters to be update.
Examples:
>>> centered_rms_prop = P.ApplyCenteredRMSProp()
>>> input_x = Tensor(np.arange(-6, 6).astype(np.float32).reshape(2, 3, 2), mindspore.float32)
>>> mean_grad = Tensor(np.arange(12).astype(np.float32).reshape(2, 3, 2), mindspore.float32)
>>> mean_square = Tensor(np.arange(-8, 4).astype(np.float32).reshape(2, 3, 2), mindspore.float32)
>>> moment = Tensor(np.arange(12).astype(np.float32).reshape(2, 3, 2), mindspore.float32)
>>> grad = Tensor(np.arange(12).astype(np.float32).rehspae(2, 3, 2), mindspore.float32)
>>> learning_rate = Tensor(0.9, mindspore.float32)
>>> decay = 0.0
>>> momentum = 1e-10
>>> epsilon = 0.05
>>> result = centered_rms_prop(input_x, mean_grad, mean_square, moment, grad,
>>> learning_rate, decay, momentum, epsilon)
[[[ -6. -9.024922]
[-12.049845 -15.074766]
[-18.09969 -21.124613]]
[[-24.149532 -27.174456]
[-30.199379 -33.2243 ]
[-36.249226 -39.274143]]]
"""
@prim_attr_register
def __init__(self, use_locking=False):
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
def infer_shape(self, var_shape, mean_gradient_shape, mean_square_shape, moment_shape, grad_shape,
learning_rate_shape, decay_shape, momentum_shape, epsilon_shape):
validator.check("var_shape", var_shape, "mean_gradient_shape", mean_gradient_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "mean_square_shape", mean_square_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "moment_shape", moment_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name)
return var_shape
def infer_dtype(self, var_dtype, mean_gradient_dtype, mean_square_dtype, moment_dtype, grad_dtype,
learning_rate_dtype, rho_dtype, momentum_dtype, epsilon_dtype):
args = {"var": var_dtype, "mean_gradient": mean_gradient_dtype,
"mean_square": mean_square_dtype, "moment": moment_dtype, "grad": grad_dtype}
validator.check_tensor_type_same(args, mstype.number_type, self.name)
valid_types = [mstype.float16, mstype.float32]
args_rho = {"rho": rho_dtype, 'momentum': momentum_dtype, "epsilon": epsilon_dtype}
validator.check_type_same(args_rho, valid_types, self.name)
args_lr = {"learning_rate": learning_rate_dtype, "rho": rho_dtype}
validator.check_scalar_or_tensor_type_same(args_lr, valid_types, self.name, allow_mix=True)
return var_dtype
[docs]class LayerNorm(Primitive):
r"""
Applies the Layer Normalization to the input tensor.
This operator will normalize the input tensor on given axis. LayerNorm is described in the paper
`Layer Normalization <https://arxiv.org/abs/1607.06450>`_.
.. math::
y = \frac{x - mean}{\sqrt{variance + \epsilon}} * \gamma + \beta
where :math:`\gamma` is scale, :math:`\beta` is bias, :math:`\epsilon` is epsilon.
Args:
begin_norm_axis (int): The begin axis of the `input_x` to apply LayerNorm,
the value should be in [-1, rank(input)). Default: 1.
begin_params_axis (int): The begin axis of the parameter input (`gamma`, `beta`) to
apply LayerNorm, the value should be in [-1, rank(input)). Default: 1.
epsilon (float): A value added to the denominator for numerical stability. Default: 1e-7.
Inputs:
- **input_x** (Tensor) - Tensor of shape :math:`(N, \ldots)`.
The input of LayerNorm.
- **gamma** (Tensor) - Tensor of shape :math:`(P_0, \ldots, P_\text{begin_params_axis})`.
The learnable parameter `gamma` as the scale on norm.
- **beta** (Tensor) - Tensor of shape :math:`(P_0, \ldots, P_\text{begin_params_axis})`.
The learnable parameter `beta` as the scale on norm.
Outputs:
tuple[Tensor], tuple of 3 tensors, the normalized input and the updated parameters.
- **output_x** (Tensor) - The normalized input, has the same type and shape as the `input_x`.
The shape is :math:`(N, C)`.
- **mean** (Tensor) - Tensor of shape :math:`(C,)`.
- **variance** (Tensor) - Tensor of shape :math:`(C,)`.
Examples:
>>> input_x = Tensor(np.array([[1, 2, 3], [1, 2, 3]]), mindspore.float32)
>>> gamma = Tensor(np.ones([3]), mindspore.float32)
>>> beta = Tensor(np.ones([3]), mindspore.float32)
>>> layer_norm = P.LayerNorm()
>>> output = layer_norm(input_x, gamma, beta)
([[-0.22474492, 1., 2.2247488], [-0.22474492, 1., 2.2247488]],
[[2.], [2.]], [[0.6666667], [0.6666667]])
"""
@prim_attr_register
def __init__(self, begin_norm_axis=1, begin_params_axis=1, epsilon=1e-7):
validator.check_value_type('begin_norm_axis', begin_norm_axis, [int], self.name)
validator.check_value_type('begin_params_axis', begin_params_axis, [int], self.name)
validator.check_value_type('epsilon', epsilon, [float], self.name)
[docs]class L2Normalize(PrimitiveWithInfer):
r"""
L2 normalization Operator.
This operator will normalizes the input using the given axis. The function is shown as follows:
.. math::
\text{output} = \frac{x}{\sqrt{\text{max}(\text{sum} (\text{input_x}^2), \epsilon)}},
where :math:`\epsilon` is epsilon.
Args:
axis (int): The begin axis for the input to apply L2 normalize. Default: 0.
epsilon (float): A small value added for numerical stability. Default: 1e-4.
Inputs:
- **input_x** (Tensor) - Input to compute the normalization.
Outputs:
Tensor, with the same type and shape as the input.
Examples:
>>> l2_normalize = P.L2Normalize()
>>> input_x = Tensor(np.random.randint(-256, 256, (2, 3, 4)), mindspore.float32)
>>> result = l2_normalize(input_x)
[[[-0.47247353 -0.30934513 -0.4991462 0.8185567 ]
[-0.08070751 -0.9961299 -0.5741758 0.09262337]
[-0.9916556 -0.3049123 0.5730487 -0.40579924]
[[-0.88134485 0.9509498 -0.86651784 0.57442576]
[ 0.99673784 0.08789381 -0.8187321 0.9957012 ]
[ 0.12891524 -0.9523804 -0.81952125 0.91396334]]]
"""
@prim_attr_register
def __init__(self, axis=0, epsilon=1e-4):
validator.check_value_type('axis', axis, [int], self.name)
validator.check_value_type('epsilon', epsilon, [int, float], self.name)
def infer_shape(self, input_x):
dim = len(input_x)
validator.check_int_range('axis value', self.axis, -dim, dim, Rel.INC_LEFT, self.name)
return input_x
def infer_dtype(self, input_x):
validator.check_subclass("x", input_x, mstype.tensor, self.name)
return input_x
[docs]class DropoutGenMask(Primitive):
"""
Generates the mask value for the input shape.
Args:
Seed0 (int): Seed0 value for random generating. Default: 0.
Seed1 (int): Seed1 value for random generating. Default: 0.
Inputs:
- **shape** (tuple[int]) - The shape of target mask.
- **keep_prob** (Tensor) - The keep rate, between 0 and 1, e.g. keep_prob = 0.9,
means dropping out 10% of input units.
Outputs:
Tensor, the value of generated mask for input shape.
Examples:
>>> dropout_gen_mask = P.DropoutGenMask()
>>> shape = (20, 16, 50)
>>> keep_prob = Tensor(0.5, mindspore.float32)
>>> mask = dropout_gen_mask(shape, keep_prob)
"""
@prim_attr_register
def __init__(self, Seed0=0, Seed1=0):
self.init_prim_io_names(inputs=['shape', 'keep_prob'], outputs=['output'])
validator.check_value_type("Seed0", Seed0, [int], self.name)
validator.check_value_type("Seed1", Seed1, [int], self.name)
self.add_prim_attr("_random_effect", True)
[docs]class DropoutDoMask(PrimitiveWithInfer):
"""
Applies dropout mask on the input tensor.
Take the mask output of DropoutGenMask as input, and apply dropout on the input.
Inputs:
- **input_x** (Tensor) - The input tensor.
- **mask** (Tensor) - The mask to be applied on `input_x`, which is the output of `DropoutGenMask`. And the
shape of `input_x` must be same as the value of `DropoutGenMask`'s input `shape`. If input wrong `mask`,
the output of `DropoutDoMask` are unpredictable.
- **keep_prob** (Tensor) - The keep rate, between 0 and 1, e.g. keep_prob = 0.9,
means dropping out 10% of input units. The value of `keep_prob` is same as the input `keep_prob` of
`DropoutGenMask`.
Outputs:
Tensor, the value that applied dropout on.
Examples:
>>> x = Tensor(np.ones([20, 16, 50]), mindspore.float32)
>>> shape = (20, 16, 50)
>>> keep_prob = Tensor(0.5, mindspore.float32)
>>> dropout_gen_mask = P.DropoutGenMask()
>>> dropout_do_mask = P.DropoutDoMask()
>>> mask = dropout_gen_mask(shape, keep_prob)
>>> output = dropout_do_mask(x, mask, keep_prob)
>>> assert output.shape == (20, 16, 50)
"""
@prim_attr_register
def __init__(self):
pass
def __infer__(self, input_x, mask, keep_prob):
input_x_shape = input_x['shape']
mask_shape = mask['shape']
keep_prob_shape = keep_prob['shape']
validator.check("keep_prob's dim", len(keep_prob_shape), '0(scalar)', 0, Rel.EQ, self.name)
size_x = reduce(lambda x, y: x * y, input_x_shape)
if len(mask_shape) != 1:
raise ValueError("DropoutDoMask mask shape should be 1-dimension.")
size_y = mask_shape[0] * 8
if size_x > size_y:
raise ValueError(f"DropoutDoMask y mask do not math input input_x shape:"
"{input_x_shape}, mask shape: {mask_shape}.")
validator.check_tensor_type_same({"input_x": input_x['dtype']}, [mstype.float32, mstype.float16, mstype.int32],
self.name)
validator.check_tensor_type_same({"input_mask": mask['dtype']}, [mstype.uint8], self.name)
keep_prob_v = keep_prob['value']
if keep_prob_v is not None:
validator.check_number_range('keep_prob', keep_prob_v.asnumpy(), 0, 1, Rel.INC_BOTH, self.name)
out = {'shape': input_x_shape,
'dtype': input_x['dtype'],
'value': None}
return out
[docs]class ResizeBilinear(PrimitiveWithInfer):
r"""
Resizes the image to certain size using bilinear interpolation.
The resizing only affects the lower two dimensions which represent the height and width. The input images
can be represented by different data types, but the data types of output images are always float32.
Args:
size (tuple[int]): A tuple of 2 int elements `(new_height, new_width)`, the new size for the images.
align_corners (bool): If it's true, rescale input by `(new_height - 1) / (height - 1)`,
which exactly aligns the 4 corners of images and resized images. If it's false,
rescale by `new_height / height`. Default: False.
Inputs:
- **input** (Tensor) - Image to be resized. Tensor of shape `(N_i, ..., N_n, height, width)`.
Outputs:
Tensor, resized image. Tensor of shape `(N_i, ..., N_n, new_height, new_width)` in `float32`.
Examples:
>>> tensor = Tensor([[[[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]]]], mindspore.int32)
>>> resize_bilinear = P.ResizeBilinear((5, 5))
>>> result = resize_bilinear(tensor)
>>> assert result.shape == (5, 5)
"""
@prim_attr_register
def __init__(self, size, align_corners=False):
pass
def infer_shape(self, input_shape):
input_shape = list(input_shape)
batch, channel, _, _ = input_shape
out_shape = [batch, channel]
for i in self.size:
out_shape.append(int(i))
return out_shape
def infer_dtype(self, input_dtype):
return mstype.tensor_type(mstype.float32)
[docs]class OneHot(PrimitiveWithInfer):
r"""
Computes a one-hot tensor.
Makes a new tensor, whose locations represented by indices in `indices` take value `on_value`, while all
other locations take value `off_value`.
Note:
If the input indices is rank `N`, the output will have rank `N+1`. The new axis is created at dimension `axis`.
Args:
axis (int): Position to insert the value. e.g. If `indices` shape is [n, c], and `axis` is `-1` the output shape
will be [n, c, depth], If `axis` is `0` the output shape will be [depth, n, c]. Default: -1.
Inputs:
- **indices** (Tensor) - A tensor of indices. Tensor of shape :math:`(X_0, \ldots, X_n)`.
- **depth** (int) - A scalar defining the depth of the one hot dimension.
- **on_value** (Tensor) - A value to fill in output when `indices[j] = i`.
- **off_value** (Tensor) - A value to fill in output when `indices[j] != i`.
Outputs:
Tensor, one_hot tensor. Tensor of shape :math:`(X_0, \ldots, X_{axis}, \text{depth} ,X_{axis+1}, \ldots, X_n)`.
Examples:
>>> indices = Tensor(np.array([0, 1, 2]), mindspore.int32)
>>> depth, on_value, off_value = 3, Tensor(1.0, mindspore.float32), Tensor(0.0, mindspore.float32)
>>> onehot = P.OneHot()
>>> result = onehot(indices, depth, on_value, off_value)
[[1, 0, 0], [0, 1, 0], [0, 0, 1]]
"""
@prim_attr_register
def __init__(self, axis=-1):
self.init_prim_io_names(inputs=['indices', 'depth', 'on_value', 'off_value'], outputs=['output'])
validator.check_value_type("axis", axis, [int], self.name)
def __infer__(self, indices, depth, on_value, off_value):
# check type
validator.check_tensor_type_same({"indices": indices['dtype']}, (mstype.int32,), self.name)
validator.check_type_name("depth", depth['dtype'], mstype.int_type, self.name)
args = {"on_value": on_value['dtype'], "off_value": off_value['dtype']}
validator.check_tensor_type_same(args, (mstype.float16, mstype.float32), self.name)
# check shape
indices_shp = indices['shape']
validator.check_int_range("axis", self.axis, -1, len(indices_shp), Rel.INC_BOTH, self.name)
depth_val = depth['value']
validator.check_integer("depth", depth_val, 0, Rel.GE, self.name)
# create new dimension at end if self.axis is -1
_ = indices_shp.insert(self.axis, depth_val) if self.axis >= 0 else indices_shp.append(depth_val)
return {'shape': indices_shp,
'dtype': on_value['dtype'],
'value': None}
[docs]class Gelu(PrimitiveWithInfer):
r"""
Gaussian Error Linear Units activation function.
GeLU is described in the paper `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_.
And also please refer to `BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding.
<https://arxiv.org/abs/1810.04805>`_.
Defined as follows:
.. math::
\text{output} = 0.5 * x * (1 + erf(x / \sqrt{2})),
where :math:`erf` is the "Gauss error function" .
Inputs:
- **input_x** (Tensor) - Input to compute the Gelu.
Outputs:
Tensor, with the same type and shape as input.
Examples:
>>> tensor = Tensor(np.array([1.0, 2.0, 3.0]), mindspore.float32)
>>> gelu = P.Gelu()
>>> result = gelu(tensor)
"""
@prim_attr_register
def __init__(self):
"""init GeLU"""
self.init_prim_io_names(inputs=['x'], outputs=['output'])
def infer_shape(self, input_x):
return input_x
def infer_dtype(self, input_x):
validator.check_tensor_type_same({"input_x": input_x}, (mstype.float16, mstype.float32), self.name)
return input_x
[docs]class GetNext(PrimitiveWithInfer):
"""
Returns the next element in the dataset queue.
Note:
GetNext op needs to be associated with network and also depends on the init_dataset interface,
it can't be used directly as a single op.
For details, please refer to `nn.DataWrapper` source code.
Args:
types (list[:class:`mindspore.dtype`]): The type of the outputs.
shapes (list[tuple[int]]): The dimensionality of the outputs.
output_num (int): The output number, length of `types` and `shapes`.
shared_name (str): The queue name of `init_dataset` interface.
Inputs:
No inputs.
Outputs:
tuple[Tensor], the output of Dataset. The shape is described in `shapes`
and the type is described is `types`.
Examples:
>>> get_next = P.GetNext([mindspore.float32, mindspore.int32], [[32, 1, 28, 28], [10]], 2, 'shared_name')
>>> feature, label = get_next()
"""
@prim_attr_register
def __init__(self, types, shapes, output_num, shared_name):
validator.check_value_type("types", types, [list, tuple], self.name)
validator.check_value_type("shapes", shapes, [list, tuple], self.name)
validator.check("types length", len(types), "shapes length", len(shapes), Rel.EQ, self.name)
validator.check_value_type("output_num", output_num, [int], self.name)
def infer_shape(self):
return tuple(self.shapes)
def infer_dtype(self):
return tuple(self.types)
[docs]class PReLU(PrimitiveWithInfer):
r"""
Parametric Rectified Linear Unit activation function.
PReLU is described in the paper `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification <https://arxiv.org/abs/1502.01852>`_. Defined as follows:
.. math::
prelu(x_i)= \max(0, x_i) + \min(0, w * x_i),
where :math:`x_i` is an element of an channel of the input.
Note:
1-dimensional input_x is not supported.
Inputs:
- **input_x** (Tensor) - Float tensor, representing the output of the preview layer.
- **weight** (Tensor) - Float Tensor, w > 0, there is only two shapes are legitimate,
1 or the number of channels at input.
Outputs:
Tensor, with the same type as `input_x`.
Detailed information, please refer to `nn.PReLU`.
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore.ops import operations as P
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.prelu = P.PReLU()
>>> def construct(self, input_x, weight):
>>> result = self.prelu(input_x, weight)
>>> return result
>>>
>>> input_x = Tensor(np.random.randint(-3, 3, (2, 3, 2)), mindspore.float32)
>>> weight = Tensor(np.array([0.1, 0.6, -0.3]), mindspore.float32)
>>> net = Net()
>>> result = net(input_x, weight)
[[[-0.1 1. ]
[ 0. 2. ]
[0. 0. ]]
[[-0.2 -0.1 ]
[2. -1.8000001]
[0.6 0.6 ]]]
"""
@prim_attr_register
def __init__(self):
pass
def infer_shape(self, input_x_shape, weight_shape):
input_x_dim = len(input_x_shape)
weight_dim = len(weight_shape)
if input_x_dim == 1:
raise ValueError(f'For \'{self.name}\' input_x rank 1 is not supported.')
if weight_dim != 1:
raise ValueError(f'For \'{self.name}\' weight_dim must be 1, while weight_dim is {weight_dim}.')
if weight_shape[0] != input_x_shape[1] and weight_shape[0] != 1:
raise ValueError(f'For \'{self.name}\' channel of input_x and weight must be matched,'
f' while channel of input_x is {input_x_shape[1]},'
f' weight_shape[0] is {weight_shape[0]}.')
return input_x_shape
def infer_dtype(self, input_x_dtype, weight_dtype):
valid_types = (mstype.float16, mstype.float32)
validator.check_tensor_type_same({"input_x": input_x_dtype}, valid_types, self.name)
validator.check_tensor_type_same({"weight": weight_dtype}, valid_types, self.name)
return input_x_dtype
[docs]class LSTM(PrimitiveWithInfer):
"""
Performs the long short term memory(LSTM) on the input.
Detailed information, please refer to `nn.LSTM`.
"""
@prim_attr_register
def __init__(self, input_size, hidden_size, num_layers, has_bias, bidirectional, dropout):
self.input_size = validator.check_integer("input_size", input_size, 0, Rel.GT, self.name)
self.hidden_size = validator.check_integer("hidden_size", hidden_size, 0, Rel.GT, self.name)
self.num_layers = validator.check_integer("num_layers", num_layers, 0, Rel.GT, self.name)
self.has_bias = validator.check_value_type("has_bias", has_bias, (bool,), self.name)
self.bidirectional = validator.check_value_type("bidirectional", bidirectional, (bool,), self.name)
self.dropout = validator.check_value_type("dropout", dropout, [float], self.name)
self.dropout = validator.check_number_range('dropout', dropout, 0, 1, Rel.INC_BOTH, self.name)
if bidirectional:
self.num_directions = 2
else:
self.num_directions = 1
def infer_shape(self, x_shape, h_shape, c_shape, w_shape):
# (seq, batch_size, feature)
validator.check_integer("x rank", len(x_shape), 3, Rel.EQ, self.name)
validator.check_integer("x[2]", x_shape[2], self.input_size, Rel.EQ, self.name)
# h and c should be same shape
validator.check_integer("h rank", len(h_shape), 3, Rel.EQ, self.name)
validator.check("h_shape", h_shape, "c_shape", c_shape, Rel.EQ, self.name)
# (num_layers * num_directions, batch, hidden_size)
validator.check_integer("h[0]", h_shape[0], self.num_layers * self.num_directions, Rel.EQ, self.name)
validator.check_integer("h[1]", h_shape[1], x_shape[1], Rel.EQ, self.name)
validator.check_integer("h[2]", h_shape[2], self.hidden_size, Rel.EQ, self.name)
y_shape = (x_shape[0], x_shape[1], self.hidden_size * self.num_directions)
# set arbitrary shape for reserved space
type_size = 4
gates_ws_ld = self.get_good_ld(self.hidden_size * 4, type_size)
states_ws_ld = self.get_good_ld(max(self.hidden_size, self.input_size), type_size)
self.ws_gates_size = self.num_layers * self.num_directions * x_shape[0] * x_shape[1] * gates_ws_ld * type_size
self.ws_states_size = (self.num_layers + 1) * self.num_directions * (x_shape[0] + 1) * x_shape[
1] * states_ws_ld * type_size
self.ws_c_states_size = (self.num_layers + 1) * self.num_directions * (x_shape[0] + 1) * x_shape[
1] * states_ws_ld * type_size
self.ws_diff_states_size = (self.num_layers + 1) * self.num_directions * (x_shape[0] + 1) * (2 + 1) * x_shape[
1] * states_ws_ld * type_size
self.ws_grid_comp_size = 0
self.page_size = 4096
current_offset = 0
current_offset += self.ws_gates_size
current_offset = self.rnd_up(current_offset, self.page_size)
current_offset += self.ws_states_size
current_offset = self.rnd_up(current_offset, self.page_size)
current_offset += self.ws_c_states_size
current_offset = self.rnd_up(current_offset, self.page_size)
current_offset += self.ws_diff_states_size
current_offset = self.rnd_up(current_offset, self.page_size)
current_offset += self.ws_grid_comp_size
reserved_shape = (current_offset, 1)
state_shape = (1, 1)
return (y_shape, h_shape, c_shape, reserved_shape, state_shape)
def infer_dtype(self, x_dtype, h_dtype, c_dtype, w_dtype):
args = {'x': x_dtype, 'h': h_dtype, 'c': c_dtype, 'w': w_dtype}
validator.check_tensor_type_same(args, (mstype.float32, mstype.float16), self.name)
return (x_dtype, x_dtype, x_dtype, x_dtype, x_dtype)
def rnd_up(self, current_offset, page_size):
return ((current_offset + page_size - 1) // page_size) * page_size
def get_good_ld(self, dim, type_size):
ld = self.rnd_up(dim, 64 // type_size)
if ld * 256 == 0:
return ld + 64 // type_size
return ld
[docs]class SigmoidCrossEntropyWithLogits(PrimitiveWithInfer):
r"""
Uses the given logits to compute sigmoid cross entropy.
Note:
Sets input logits as `X`, input label as `Y`, output as `loss`. Then,
.. math::
p_{ij} = sigmoid(X_{ij}) = \frac{1}{1 + e^{-X_{ij}}}
.. math::
loss_{ij} = -[Y_{ij} * ln(p_{ij}) + (1 - Y_{ij})ln(1 - p_{ij})]
Inputs:
- **logits** (Tensor) - Input logits.
- **label** (Tensor) - Ground truth label.
Outputs:
Tensor, with the same shape and type as input `logits`.
Examples:
>>> logits = Tensor(np.random.randn(2, 3).astype(np.float16))
>>> labels = Tensor(np.random.randn(2, 3).astype(np.float16))
>>> sigmoid = P.SigmoidCrossEntropyWithLogits()
>>> sigmoid(logits, labels)
"""
@prim_attr_register
def __init__(self):
"""Init SigmoidCrossEntropyWithLogits"""
self.init_prim_io_names(inputs=['predict', 'target'], outputs=['loss'])
def infer_shape(self, x_shape, y_shape):
validator.check("x_shape", x_shape, "y_shape", y_shape, Rel.EQ, self.name)
return x_shape
def infer_dtype(self, x_dtype, y_dtype):
args = {"x_dtype": x_dtype, "y_dtype": y_dtype}
validator.check_tensor_type_same(args, mstype.number_type, self.name)
return x_dtype
[docs]class Pad(PrimitiveWithInfer):
"""
Pads input tensor according to the paddings.
Args:
paddings (tuple): The shape of parameter `paddings` is (N, 2). N is the rank of input data. All elements of
paddings are int type. For `D` th dimension of input, paddings[D, 0] indicates how many sizes to be
extended ahead of the `D` th dimension of the input tensor, and paddings[D, 1] indicates how many sizes to
be extended behind of the `D` th dimension of the input tensor.
Inputs:
- **input_x** (Tensor) - The input tensor.
Outputs:
Tensor, the tensor after padding.
Examples:
>>> input_tensor = Tensor(np.array([[-0.1, 0.3, 3.6], [0.4, 0.5, -3.2]]), mindspore.float32)
>>> pad_op = P.Pad(((1, 2), (2, 1)))
>>> output_tensor = pad_op(input_tensor)
>>> assert output_tensor == Tensor(np.array([[ 0. , 0. , 0. , 0. , 0. , 0. ],
>>> [ 0. , 0. , -0.1, 0.3, 3.6, 0. ],
>>> [ 0. , 0. , 0.4, 0.5, -3.2, 0. ],
>>> [ 0. , 0. , 0. , 0. , 0. , 0. ],
>>> [ 0. , 0. , 0. , 0. , 0. , 0. ]]), mindspore.float32)
"""
@prim_attr_register
def __init__(self, paddings):
"""Init Pad"""
self.init_prim_io_names(inputs=['x'], outputs=['y'])
if not isinstance(paddings, tuple):
raise TypeError('Paddings must be tuple type.')
for item in paddings:
if len(item) != 2:
raise ValueError('The shape of paddings must be (n, 2).')
self.paddings = paddings
def infer_shape(self, x):
paddings = np.array(self.paddings)
validator.check_integer('paddings.shape', paddings.size, len(x) * 2, Rel.EQ, self.name)
if not np.all(paddings >= 0):
raise ValueError('All elements of paddings must be >= 0.')
y_shape = ()
for i in range(int(paddings.size / 2)):
y_shape += ((x[i] + paddings[i, 0] + paddings[i, 1]),)
return y_shape
def infer_dtype(self, x):
validator.check_subclass("input_x", x, mstype.tensor, self.name)
return x
[docs]class MirrorPad(PrimitiveWithInfer):
"""
Pads the input tensor according to the paddings and mode.
Args:
mode (str): Specifies padding mode. The optional values are "REFLECT", "SYMMETRIC".
Default: "REFLECT".
Inputs:
- **input_x** (Tensor) - The input tensor.
- **paddings** (Tensor) - The paddings tensor. The value of `paddings` is a matrix(list),
and its shape is (N, 2). N is the rank of input data. All elements of paddings
are int type. For `D` th dimension of input, paddings[D, 0] indicates how many sizes to be
extended ahead of the `D` th dimension of the input tensor, and paddings[D, 1] indicates
how many sizes to be extended behind of the `D` th dimension of the input tensor.
Outputs:
Tensor, the tensor after padding.
- If `mode` is "REFLECT", it uses a way of symmetrical copying throught the axis of symmetry to fill in.
If the `input_x` is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the
Outputs is [[6,5,4,5,6,5,4],[3,2,1,2,3,2,1],[6,5,4,5,6,5,4],[9,8,7,8,9,8,7],[6,5,4,5,6,5,4]].
- If `mode` is "SYMMETRIC", the filling method is similar to the "REFLECT". It is also copied
according to the symmetry axis, except that it includes the symmetry axis. If the `input_x`
is [[1,2,3],[4,5,6],[7,8,9]] and `paddings` is [[1,1],[2,2]], then the Outputs is
[[2,1,1,2,3,3,2],[2,1,1,2,3,3,2],[5,4,4,5,6,6,5],[8,7,7,8,9,9,8],[8,7,7,8,9,9,8]].
Examples:
>>> from mindspore import Tensor
>>> from mindspore.ops import operations as P
>>> import mindspore.nn as nn
>>> import numpy as np
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.pad = P.MirrorPad(mode="REFLECT")
>>> def construct(self, x, paddings):
>>> return self.pad(x, paddings)
>>> x = np.random.random(size=(2, 3)).astype(np.float32)
>>> paddings = Tensor([[1,1],[2,2]])
>>> pad = Net()
>>> ms_output = pad(Tensor(x), paddings)
"""
@prim_attr_register
def __init__(self, mode='REFLECT'):
"""Init Pad"""
validator.check_string('mode', mode, ['REFLECT', 'SYMMETRIC'], self.name)
self.mode = mode
def __infer__(self, input_x, paddings):
validator.check_subclass("input_x", input_x['dtype'], mstype.tensor, self.name)
validator.check_subclass("paddings", paddings['dtype'], mstype.tensor, self.name)
x_shape = list(input_x['shape'])
paddings_value = paddings['value'].asnumpy()
paddings_size = paddings_value.size
validator.check_integer('paddings.shape', paddings_size, len(x_shape) * 2, Rel.EQ, self.name)
if not np.all(paddings_size >= 0):
raise ValueError('All elements of paddings must be >= 0.')
y_shape = ()
for i in range(0, int(paddings_size / 2)):
y_shape += ((x_shape[i] + paddings_value[i, 0] + paddings_value[i, 1]),)
return {'shape': y_shape,
'dtype': input_x['dtype'],
'value': None}
[docs]class ROIAlign(PrimitiveWithInfer):
"""
Computes Region of Interest (RoI) Align operator.
The operator computes the value of each sampling point by bilinear interpolation from the nearby grid points on the
feature map. No quantization is performed on any coordinates involved in the RoI, its bins, or the sampling
points. The details of (RoI) Align operator are described in `Mask R-CNN <https://arxiv.org/abs/1703.06870>`_.
Args:
pooled_height (int): The output features' height.
pooled_width (int): The output features' width.
spatial_scale (float): A scaling factor that maps the raw image coordinates to the input
feature map coordinates. Suppose the height of a RoI is `ori_h` in the raw image and `fea_h` in the
input feature map, the `spatial_scale` should be `fea_h / ori_h`.
sample_num (int): Number of sampling points. Default: 2.
Inputs:
- **features** (Tensor) - The input features, whose shape should be `(N, C, H, W)`.
- **rois** (Tensor) - The shape is `(rois_n, 5)`. `rois_n` represents the number of RoI. The size of
the second dimension should be `5` and the `5` colunms are
`(image_index, top_left_x, top_left_y, bottom_right_x, bottom_right_y)`. `image_index` represents the
index of image. `top_left_x` and `top_left_y` represent the `x, y` coordinates of the top left corner
of corresponding RoI, respectively. `bottom_right_x` and `bottom_right_y` represent the `x, y`
coordinates of the bottom right corner of corresponding RoI, respectively.
Outputs:
Tensor, the shape is `(rois_n, C, pooled_height, pooled_width)`.
Examples:
>>> input_tensor = Tensor(np.array([[[[1., 2.], [3., 4.]]]]), mindspore.float32)
>>> rois = Tensor(np.array([[0, 0.2, 0.3, 0.2, 0.3]]), mindspore.float32)
>>> roi_align = P.ROIAlign(1, 1, 0.5, 2)
>>> output_tensor = roi_align(input_tensor, rois)
>>> assert output_tensor == Tensor(np.array([[[[2.15]]]]), mindspore.float32)
"""
@prim_attr_register
def __init__(self, pooled_height, pooled_width, spatial_scale, sample_num=2):
"""init ROIAlign"""
validator.check_value_type("pooled_height", pooled_height, [int], self.name)
validator.check_value_type("pooled_width", pooled_width, [int], self.name)
validator.check_value_type("spatial_scale", spatial_scale, [float], self.name)
validator.check_value_type("sample_num", sample_num, [int], self.name)
self.pooled_height = pooled_height
self.pooled_width = pooled_width
self.spatial_scale = spatial_scale
self.sample_num = sample_num
def infer_shape(self, inputs_shape, rois_shape):
return [rois_shape[0], inputs_shape[1], self.pooled_height, self.pooled_width]
def infer_dtype(self, inputs_type, rois_type):
return inputs_type
[docs]class Adam(PrimitiveWithInfer):
r"""
Updates gradients by Adaptive Moment Estimation (Adam) algorithm.
The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
The updating formulas are as follows,
.. math::
\begin{array}{ll} \\
m = \beta_1 * m + (1 - \beta_1) * g \\
v = \beta_2 * v + (1 - \beta_2) * g * g \\
l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\
w = w - l * \frac{m}{\sqrt{v} + \epsilon}
\end{array}
:math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents
`gradient`, :math:`l` represents scaling factor `lr`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
:math:`t` represents updating step while :math:`beta_1^t` and :math:`beta_2^t` represent `beta1_power` and
`beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents `var`, :math:`\epsilon` represents
`epsilon`.
Args:
use_locking (bool): Whether to enable a lock to protect updating variable tensors.
If True, updating of the var, m, and v tensors will be protected by a lock.
If False, the result is unpredictable. Default: False.
use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
If True, updates the gradients using NAG.
If False, updates the gradients without using NAG. Default: False.
Inputs:
- **var** (Tensor) - Weights to be updated.
- **m** (Tensor) - The 1st moment vector in the updating formula. Has the same type as `var`.
- **v** (Tensor) - the 2nd moment vector in the updating formula.
Mean square gradients, has the same type as `var`.
- **beta1_power** (float) - :math:`beta_1^t` in the updating formula.
- **beta2_power** (float) - :math:`beta_2^t` in the updating formula.
- **lr** (float) - :math:`l` in the updating formula.
- **beta1** (float) - The exponential decay rate for the 1st moment estimates.
- **beta2** (float) - The exponential decay rate for the 2nd moment estimates.
- **epsilon** (float) - Term added to the denominator to improve numerical stability.
- **gradient** (Tensor) - Gradients.
Outputs:
Tuple of 3 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **m** (Tensor) - The same shape and data type as `m`.
- **v** (Tensor) - The same shape and data type as `v`.
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
>>> from mindspore import Tensor, Parameter
>>> from mindspore.ops import operations as P
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.apply_adam = P.Adam()
>>> self.var = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="var")
>>> self.m = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="m")
>>> self.v = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="v")
>>> def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad):
>>> out = self.apply_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2,
>>> epsilon, grad)
>>> return out
>>> net = Net()
>>> gradient = Tensor(np.random.rand(3, 3, 3).astype(np.float32))
>>> result = net(0.9, 0.999, 0.001, 0.9, 0.999, 1e-8, gradient)
"""
@prim_attr_register
def __init__(self, use_locking=False, use_nesterov=False):
validator.check_value_type("use_locking", use_locking, [bool], self.name)
validator.check_value_type("use_nesterov", use_nesterov, [bool], self.name)
def infer_shape(self, var_shape, m_shape, v_shape, beta1_power_shape, beta2_power_shape, lr_shape,
beta1_shape, beta2_shape, epsilon_shape, grad_shape):
validator.check("var_shape", var_shape, "m_shape", m_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "v_shape", v_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name)
return var_shape, m_shape, v_shape
def infer_dtype(self, var_dtype, m_dtype, v_dtype, beta1_power_dtype, beta2_power_dtype, lr_dtype,
beta1_dtype, beta2_dtype, epsilon_dtype, grad_dtype):
args = {"var": var_dtype, "m": m_dtype, "v": v_dtype, "grad": grad_dtype}
validator.check_tensor_type_same(args, mstype.number_type, self.name)
args = {"beta1_power": beta1_power_dtype, "beta2_power": beta2_power_dtype, 'lr': lr_dtype,
"beta1": beta1_dtype, "beta2": beta2_dtype, "epsilon": epsilon_dtype}
validator.check_scalar_or_tensor_type_same(args, [mstype.float16, mstype.float32], self.name, True)
return var_dtype, m_dtype, v_dtype
[docs]class SparseApplyAdam(PrimitiveWithInfer):
r"""
Merge the duplicate value of the gradient and then updates parameters by Adaptive Moment Estimation (Adam)
algorithm. This operator is used when the gradient is sparse.
The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
The updating formulas are as follows,
.. math::
\begin{array}{ll} \\
m = \beta_1 * m + (1 - \beta_1) * g \\
v = \beta_2 * v + (1 - \beta_2) * g * g \\
l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\
w = w - l * \frac{m}{\sqrt{v} + \epsilon}
\end{array}
:math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents
`gradient`, :math:`l` represents scaling factor `lr`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
:math:`t` represents updating step while :math:`beta_1^t` and :math:`beta_2^t` represent `beta1_power` and
`beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents `var`, :math:`\epsilon` represents
`epsilon`.
Args:
use_locking (bool): Whether to enable a lock to protect updating variable tensors.
If True, updating of the var, m, and v tensors will be protected by a lock.
If False, the result is unpredictable. Default: False.
use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
If True, updates the gradients using NAG.
If False, updates the gradients without using NAG. Default: False.
Inputs:
- **var** (Parameter) - Parameters to be updated. With float32 data type.
- **m** (Parameter) - The 1st moment vector in the updating formula. Has the same type as `var`. With
float32 data type.
- **v** (Parameter) - The 2nd moment vector in the updating formula. Mean square gradients,
has the same type as `var`. With float32 data type.
- **beta1_power** (Tensor) - :math:`beta_1^t` in the updating formula. With float32 data type.
- **beta2_power** (Tensor) - :math:`beta_2^t` in the updating formula. With float32 data type.
- **lr** (Tensor) - :math:`l` in the updating formula. With float32 data type.
- **beta1** (Tensor) - The exponential decay rate for the 1st moment estimates. With float32 data type.
- **beta2** (Tensor) - The exponential decay rate for the 2nd moment estimates. With float32 data type.
- **epsilon** (Tensor) - Term added to the denominator to improve numerical stability. With float32 data type.
- **gradient** (Tensor) - Gradient value. With float32 data type.
- **indices** (Tensor) - Gradient indices. With int32 data type.
Outputs:
Tuple of 3 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **m** (Tensor) - The same shape and data type as `m`.
- **v** (Tensor) - The same shape and data type as `v`.
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
>>> from mindspore import Tensor, Parameter
>>> from mindspore.ops import operations as P
>>> import mindspore.common.dtype as mstype
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.sparse_apply_adam = P.SparseApplyAdam()
>>> self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var")
>>> self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m")
>>> self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v")
>>> def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, indices):
>>> out = self.sparse_apply_adam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1, beta2,
>>> epsilon, grad, indices)
>>> return out
>>> net = Net()
>>> beta1_power = Tensor(0.9, mstype.float32)
>>> beta2_power = Tensor(0.999, mstype.float32)
>>> lr = Tensor(0.001, mstype.float32)
>>> beta1 = Tensor(0.9, mstype.float32)
>>> beta2 = Tensor(0.999, mstype.float32)
>>> epsilon = Tensor(1e-8, mstype.float32)
>>> gradient = Tensor(np.random.rand(2, 1, 2), mstype.float32)
>>> indices = Tensor([0, 1], mstype.int32)
>>> result = net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices)
"""
__mindspore_signature__ = (
('var', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('m', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('v', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('beta1_power', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T),
('beta2_power', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T),
('lr', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T),
('beta1', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T),
('beta2', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T),
('epsilon', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T),
('grad', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('indices', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T1)
)
@prim_attr_register
def __init__(self, use_locking=False, use_nesterov=False):
validator.check_value_type("use_locking", use_locking, [bool], self.name)
validator.check_value_type("use_nesterov", use_nesterov, [bool], self.name)
self.init_prim_io_names(inputs=['var', 'm', 'v', 'beta1_power', 'beta2_power', 'lr', 'beta1', 'beta2',
'epsilon', 'grad', 'indices'],
outputs=['var', 'm', 'v'])
def infer_shape(self, var_shape, m_shape, v_shape, beta1_power_shape, beta2_power_shape, lr_shape,
beta1_shape, beta2_shape, epsilon_shape, grad_shape, indices_shape):
validator.check("var_shape", var_shape, "m_shape", m_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "v_shape", v_shape, Rel.EQ, self.name)
validator.check_integer("indices rank", len(indices_shape), 1, Rel.EQ, self.name)
validator.check('grad_shape[0]', grad_shape[0], 'indices_shape[0]', indices_shape[0], Rel.EQ, self.name)
if len(var_shape) > 1 and grad_shape != indices_shape + var_shape[1:]:
raise ValueError(f"For '{self.name}', the shape of updates should be [] or "
f"grad_shape = indices_shape + var_shape[1:], but got var_shape: {var_shape}, "
f"indices_shape: {indices_shape}, grad_shape: {grad_shape}.")
return var_shape, m_shape, v_shape
def infer_dtype(self, var_dtype, m_dtype, v_dtype, beta1_power_dtype, beta2_power_dtype, lr_dtype,
beta1_dtype, beta2_dtype, epsilon_dtype, grad_dtype, indices_dtype):
args = {"var": var_dtype, "m": m_dtype, "v": v_dtype, "grad": grad_dtype}
validator.check_tensor_type_same(args, mstype.number_type, self.name)
args = {"beta1_power": beta1_power_dtype, "beta2_power": beta2_power_dtype, 'lr': lr_dtype,
"beta1": beta1_dtype, "beta2": beta2_dtype, "epsilon": epsilon_dtype}
validator.check_scalar_or_tensor_type_same(args, [mstype.float16, mstype.float32], self.name, True)
validator.check_tensor_type_same({"indices_dtype": indices_dtype}, [mstype.int32], self.name)
return var_dtype, m_dtype, v_dtype
[docs]class SparseApplyLazyAdam(PrimitiveWithInfer):
r"""
Merge the duplicate value of the gradient and then updates parameters by Adaptive Moment Estimation (Adam)
algorithm. This operator is used when the gradient is sparse. The behavior is not equivalent to the
original Adam algorithm, as only the current indices parameters will be updated.
The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
The updating formulas are as follows,
.. math::
\begin{array}{ll} \\
m = \beta_1 * m + (1 - \beta_1) * g \\
v = \beta_2 * v + (1 - \beta_2) * g * g \\
l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\
w = w - l * \frac{m}{\sqrt{v} + \epsilon}
\end{array}
:math:`m` represents the 1st moment vector, :math:`v` represents the 2nd moment vector, :math:`g` represents
`gradient`, :math:`l` represents scaling factor `lr`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
:math:`t` represents updating step while :math:`beta_1^t` and :math:`beta_2^t` represent `beta1_power` and
`beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents `var`, :math:`\epsilon` represents
`epsilon`.
Args:
use_locking (bool): Whether to enable a lock to protect updating variable tensors.
If True, updating of the var, m, and v tensors will be protected by a lock.
If False, the result is unpredictable. Default: False.
use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
If True, updates the gradients using NAG.
If False, updates the gradients without using NAG. Default: False.
Inputs:
- **var** (Parameter) - Parameters to be updated. With float32 data type.
- **m** (Parameter) - The 1st moment vector in the updating formula. Has the same type as `var`. With
float32 data type.
- **v** (Parameter) - The 2nd moment vector in the updating formula. Mean square gradients,
has the same type as `var`. With float32 data type.
- **beta1_power** (Tensor) - :math:`beta_1^t` in the updating formula. With float32 data type.
- **beta2_power** (Tensor) - :math:`beta_2^t` in the updating formula. With float32 data type.
- **lr** (Tensor) - :math:`l` in the updating formula. With float32 data type.
- **beta1** (Tensor) - The exponential decay rate for the 1st moment estimates. With float32 data type.
- **beta2** (Tensor) - The exponential decay rate for the 2nd moment estimates. With float32 data type.
- **epsilon** (Tensor) - Term added to the denominator to improve numerical stability. With float32 data type.
- **gradient** (Tensor) - Gradient value. With float32 data type.
- **indices** (Tensor) - Gradient indices. With int32 data type.
Outputs:
Tuple of 3 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **m** (Tensor) - The same shape and data type as `m`.
- **v** (Tensor) - The same shape and data type as `v`.
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
>>> from mindspore import Tensor, Parameter
>>> from mindspore.ops import operations as P
>>> import mindspore.common.dtype as mstype
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.sparse_apply_lazyadam = P.SparseApplyLazyAdam()
>>> self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var")
>>> self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m")
>>> self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v")
>>> def construct(self, beta1_power, beta2_power, lr, beta1, beta2, epsilon, grad, indices):
>>> out = self.sparse_apply_lazyadam(self.var, self.m, self.v, beta1_power, beta2_power, lr, beta1,
>>> beta2, epsilon, grad, indices)
>>> return out
>>> net = Net()
>>> beta1_power = Tensor(0.9, mstype.float32)
>>> beta2_power = Tensor(0.999, mstype.float32)
>>> lr = Tensor(0.001, mstype.float32)
>>> beta1 = Tensor(0.9, mstype.float32)
>>> beta2 = Tensor(0.999, mstype.float32)
>>> epsilon = Tensor(1e-8, mstype.float32)
>>> gradient = Tensor(np.random.rand(2, 1, 2), mstype.float32)
>>> indices = Tensor([0, 1], mstype.int32)
>>> result = net(beta1_power, beta2_power, lr, beta1, beta2, epsilon, gradient, indices)
"""
__mindspore_signature__ = (
('var', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('m', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('v', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('beta1_power', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T),
('beta2_power', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T),
('lr', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T),
('beta1', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T),
('beta2', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T),
('epsilon', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T),
('grad', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('indices', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T1)
)
@prim_attr_register
def __init__(self, use_locking=False, use_nesterov=False):
validator.check_value_type("use_locking", use_locking, [bool], self.name)
validator.check_value_type("use_nesterov", use_nesterov, [bool], self.name)
self.init_prim_io_names(inputs=['var', 'm', 'v', 'beta1_power', 'beta2_power', 'lr', 'beta1', 'beta2',
'epsilon', 'grad', 'indices'],
outputs=['var', 'm', 'v'])
def infer_shape(self, var_shape, m_shape, v_shape, beta1_power_shape, beta2_power_shape, lr_shape,
beta1_shape, beta2_shape, epsilon_shape, grad_shape, indices_shape):
validator.check("var_shape", var_shape, "m_shape", m_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "v_shape", v_shape, Rel.EQ, self.name)
validator.check_integer("indices rank", len(indices_shape), 1, Rel.EQ, self.name)
validator.check('grad_shape[0]', grad_shape[0], 'indices_shape[0]', indices_shape[0], Rel.EQ, self.name)
if len(var_shape) > 1 and grad_shape != indices_shape + var_shape[1:]:
raise ValueError(f"For '{self.name}', the shape of updates should be [] or "
f"grad_shape = indices_shape + var_shape[1:], but got var_shape: {var_shape}, "
f"indices_shape: {indices_shape}, grad_shape: {grad_shape}.")
return var_shape, m_shape, v_shape
def infer_dtype(self, var_dtype, m_dtype, v_dtype, beta1_power_dtype, beta2_power_dtype, lr_dtype,
beta1_dtype, beta2_dtype, epsilon_dtype, grad_dtype, indices_dtype):
args = {"var": var_dtype, "m": m_dtype, "v": v_dtype, "grad": grad_dtype}
validator.check_tensor_type_same(args, mstype.number_type, self.name)
args = {"beta1_power": beta1_power_dtype, "beta2_power": beta2_power_dtype, 'lr': lr_dtype,
"beta1": beta1_dtype, "beta2": beta2_dtype, "epsilon": epsilon_dtype}
validator.check_scalar_or_tensor_type_same(args, [mstype.float16, mstype.float32], self.name, True)
validator.check_tensor_type_same({"indices_dtype": indices_dtype}, [mstype.int32], self.name)
return var_dtype, m_dtype, v_dtype
[docs]class BinaryCrossEntropy(PrimitiveWithInfer):
r"""
Computes the Binary Cross Entropy between the target and the output.
Note:
Sets input as :math:`x`, input label as :math:`y`, output as :math:`\ell(x, y)`.
Let,
.. math::
L = \{l_1,\dots,l_N\}^\top, \quad
l_n = - w_n \left[ y_n \cdot \log x_n + (1 - y_n) \cdot \log (1 - x_n) \right]
Then,
.. math::
\ell(x, y) = \begin{cases}
L, & \text{if reduction} = \text{'none';}\\
\operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
\operatorname{sum}(L), & \text{if reduction} = \text{'sum'.}
\end{cases}
Args:
reduction (str): Specifies the reduction to apply to the output.
Its value should be one of 'none', 'mean', 'sum'. Default: 'mean'.
Inputs:
- **input_x** (Tensor) - The input Tensor.
- **input_y** (Tensor) - The label Tensor which has same shape as `input_x`.
- **weight** (Tensor, optional) - A rescaling weight applied to the loss of each batch element.
And it should have same shape as `input_x`. Default: None.
Outputs:
Tensor or Scalar, if `reduction` is 'none', then output is a tensor and same shape as `input_x`.
Otherwise it is a scalar.
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
>>> import numpy as np
>>> from mindspore import Tensor
>>> from mindspore.ops import operations as P
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.binary_cross_entropy = P.BinaryCrossEntropy()
>>> def construct(self, x, y, weight):
>>> result = self.binary_cross_entropy(x, y, weight)
>>> return result
>>>
>>> net = Net()
>>> input_x = Tensor(np.array([0.2, 0.7, 0.1]), mindspore.float32)
>>> input_y = Tensor(np.array([0., 1., 0.]), mindspore.float32)
>>> weight = Tensor(np.array([1, 2, 2]), mindspore.float32)
>>> result = net(input_x, input_y, weight)
0.38240486
"""
@prim_attr_register
def __init__(self, reduction='mean'):
self.reduction = validator.check_string('reduction', reduction, ['none', 'mean', 'sum'], self.name)
def infer_shape(self, x_shape, y_shape, weight_shape):
validator.check('x_shape', x_shape, 'y_shape', y_shape, Rel.EQ, self.name)
if weight_shape:
validator.check('y_shape', y_shape, 'weight_shape', weight_shape, Rel.EQ, self.name)
if self.reduction in ('mean', 'sum'):
shape = []
else:
shape = x_shape
return shape
def infer_dtype(self, x_type, y_type, weight_type):
args = {'x': x_type, 'y': y_type}
valid_types = (mstype.float16, mstype.float32)
validator.check_tensor_type_same(args, valid_types, self.name)
if weight_type:
validator.check_tensor_type_same({'x': x_type, 'weight': weight_type}, valid_types, self.name)
return x_type
[docs]class ApplyAdaMax(PrimitiveWithInfer):
r"""
Update relevant entries according to the adamax scheme.
The updating formulas are as follows,
.. math::
\begin{array}{ll} \\
m_{t} = \beta_1 * m_{t-1} + (1 - \beta_1) * g \\
v_{t} = \max(\beta_2 * v_{t-1}, \left| g \right|) \\
var = var - \frac{l}{1 - \beta_1^t} * \frac{m_{t}}{v_{t} + \epsilon}
\end{array}
:math:`t` represents updating step while, :math:`m` represents the 1st moment vector, :math:`m_{t-1}`
is the last momentent of :math:`m_{t}`, :math:`v` represents the 2nd moment vector, :math:`v_{t-1}`
is the last momentent of :math:`v_{t}`, :math:`l` represents scaling factor `lr`,
:math:`g` represents `grad`, :math:`\beta_1, \beta_2` represent `beta1` and `beta2`,
:math:`beta_1^t` represent `beta1_power`, :math:`var` represents Variable to be updated,
:math:`\epsilon` represents `epsilon`.
Inputs:
- **var** (Parameter) - Variable to be updated.
- **m** (Parameter) - The 1st moment vector in the updating formula. Has the same shape and type as `var`.
- **v** (Parameter) - The 2nd moment vector in the updating formula. Mean square gradients,
has the same shape and type as `var`.
- **beta1_power** (float) - :math:`beta_1^t` in the updating formula.
- **lr** (float) - Learning rate, :math:`l` in the updating formula. Has the same type as `var`.
- **beta1** (float) - The exponential decay rate for the 1st moment estimates.
- **beta2** (float) - The exponential decay rate for the 2nd moment estimates.
- **epsilon** (float) - A small value added for numerical stability.
- **grad** (Tensor) - A tensor for gradient. Has the same shape and type as `var`.
Outputs:
Tuple of 3 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **m** (Tensor) - The same shape and data type as `m`.
- **v** (Tensor) - The same shape and data type as `v`.
Examples:
>>> var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
>>> m = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="m")
>>> v = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="v")
>>> grad = Tensor(np.random.rand(3, 3).astype(np.float32))
>>> beta1_power = 0.9
>>> lr = 0.001
>>> beta1 = 0.9
>>> beta2 = 0.99
>>> epsilon = 1e-10
>>> apply_ada_max = P.ApplyAdaMax()
>>> output = apply_ada_max(var, m, v, beta1_power, lr, beta1, beta2, epsilon, grad)
"""
__mindspore_signature__ = (
('var', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('m', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('v', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('beta1_power', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T),
('lr', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('beta1', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('beta2', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('epsilon', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('grad', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T)
)
@prim_attr_register
def __init__(self):
"""init ApplyAdaMax"""
def infer_shape(self, var_shape, m_shape, v_shape, beta1_power_shape, lr_shape,
beta1_shape, beta2_shape, epsilon_shape, grad_shape):
validator.check("var_shape", var_shape, "m_shape", m_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "v_shape", v_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name)
return var_shape, m_shape, v_shape
def infer_dtype(self, var_dtype, m_dtype, v_dtype, beta1_power_dtype, lr_dtype,
beta1_dtype, beta2_dtype, epsilon_dtype, grad_dtype):
args = {"var": var_dtype, "m": m_dtype, "v": v_dtype, "grad": grad_dtype}
validator.check_tensor_type_same(args, mstype.number_type, self.name)
scalar_args = {"beta1_power": beta1_power_dtype, 'lr': lr_dtype, "beta1": beta1_dtype,
"beta2": beta2_dtype, "epsilon": epsilon_dtype}
validator.check_scalar_or_tensor_type_same(scalar_args, [mstype.float16, mstype.float32], self.name, True)
return var_dtype, m_dtype, v_dtype
[docs]class ApplyAdadelta(PrimitiveWithInfer):
r"""
Update relevant entries according to the adadelta scheme.
.. math::
accum = \rho * accum + (1 - \rho) * grad^2
.. math::
\text{update} = \sqrt{\text{accum_update} + \epsilon} * \frac{grad}{\sqrt{accum + \epsilon}}
.. math::
\text{accum_update} = \rho * \text{accum_update} + (1 - \rho) * update^2
.. math::
var -= lr * update
Inputs:
- **var** (Parameter) - Weights to be updated.
- **accum** (Parameter) - Accum to be updated, has the same shape and type as `var`.
- **accum_update** (Parameter) - Accum_update to be updated, has the same shape and type as `var`.
- **lr** (float) - Learning rate, has the same type as `var`.
- **rho** (float) - Decay rate.
- **epsilon** (float) - A small value added for numerical stability.
- **grad** (Tensor) - Gradients, has the same shape and type as `var`.
Outputs:
Tuple of 3 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
- **accum_update** (Tensor) - The same shape and data type as `accum_update`.
Examples:
>>> var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
>>> accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
>>> accum_update = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum_update")
>>> grad = Tensor(np.random.rand(3, 3).astype(np.float32))
>>> lr = 0.001
>>> rho = 0.0
>>> epsilon = 1e-6
>>> apply_adadelta = P.ApplyAdadelta()
>>> output = apply_adadelta(var, accum, accum_update, lr, rho, epsilon, grad)
"""
__mindspore_signature__ = (
('var', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('accum', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('accum_update', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE,
sig_dtype.T),
('lr', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('rho', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('epsilon', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('grad', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T)
)
@prim_attr_register
def __init__(self):
"""init ApplyAdadelta"""
def infer_shape(self, var_shape, accum_shape, accum_update_shape, lr_shape, rho_shape,
epsilon_shape, grad_shape):
validator.check("var_shape", var_shape, "accum_shape", accum_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "accum_update_shape", accum_update_shape, Rel.EQ, self.name)
validator.check("var_shape", var_shape, "grad_shape", grad_shape, Rel.EQ, self.name)
return var_shape, accum_shape, accum_update_shape
def infer_dtype(self, var_dtype, accum_dtype, accum_update_dtype, lr_dtype, rho_shape,
epsilon_dtype, grad_dtype):
args = {"var": var_dtype, "accum": accum_dtype, "accum_update": accum_update_dtype, "grad": grad_dtype}
validator.check_tensor_type_same(args, mstype.number_type, self.name)
scalar_args = {"lr": lr_dtype, "rho": rho_shape, "epsilon": epsilon_dtype}
validator.check_scalar_or_tensor_type_same(scalar_args, [mstype.float16, mstype.float32], self.name, True)
return var_dtype, accum_dtype, accum_update_dtype
[docs]class ApplyAdagrad(PrimitiveWithInfer):
r"""
Update relevant entries according to the adagrad scheme.
.. math::
accum += grad * grad
.. math::
var -= lr * grad * \frac{1}{\sqrt{accum}}
Args:
update_slots (bool): If `True`, `accum` will be updated. Default: True.
Inputs:
- **var** (Parameter) - Variable to be updated.
- **accum** (Parameter) - Accum to be updated. The shape and dtype should be the same as `var`.
- **lr** (float): The learning rate value, has the same type as `var`.
- **grad** (Tensor) - A tensor for gradient. The shape and dtype should be the same as `var`.
Outputs:
Tuple of 2 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
Examples:
>>> var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
>>> accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
>>> grad = Tensor(np.random.rand(3, 3).astype(np.float32))
>>> lr = 0.01
>>> apply_adagrad = P.ApplyAdagrad()
>>> output = apply_adagrad(var, accum, lr, grad)
"""
__mindspore_signature__ = (
('var', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('accum', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('lr', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('grad', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T)
)
@prim_attr_register
def __init__(self, update_slots=True):
validator.check_value_type("update_slots", update_slots, [bool], self.name)
def infer_shape(self, var_shape, accum_shape, lr_shape, grad_shape):
validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name)
validator.check('var shape', var_shape, 'grad shape', grad_shape, Rel.EQ, self.name)
return var_shape, accum_shape
def infer_dtype(self, var_dtype, accum_dtype, lr_dtype, grad_dtype):
args = {'var': var_dtype, 'accum': accum_dtype, 'grad': grad_dtype}
validator.check_tensor_type_same(args, mstype.number_type, self.name)
valid_types = [mstype.float16, mstype.float32]
validator.check_scalar_or_tensor_type_same({'lr': lr_dtype}, valid_types, self.name)
return var_dtype, accum_dtype
[docs]class ApplyAdagradV2(PrimitiveWithInfer):
r"""
Update relevant entries according to the adagradv2 scheme.
.. math::
accum += grad * grad
.. math::
var -= lr * grad * \frac{1}{\sqrt{accum} + \epsilon}
Args:
epsilon (float): A small value added for numerical stability.
update_slots (bool): If `True`, `accum` will be updated. Default: True.
Inputs:
- **var** (Parameter) - Variable to be updated.
- **accum** (Parameter) - Accum to be updated. The shape and dtype should be the same as `var`.
- **lr** (float): The learning rate value, has the same type as `var`.
- **grad** (Tensor) - A tensor for gradient. The shape and dtype should be the same as `var`.
Outputs:
Tuple of 2 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `m`.
Examples:
>>> var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
>>> accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
>>> grad = Tensor(np.random.rand(3, 3).astype(np.float32))
>>> lr = 0.01
>>> apply_adagrad_v2 = P.ApplyAdagradV2(epsilon=1e-6)
>>> output = apply_adagrad_v2(var, accum, lr, grad)
"""
__mindspore_signature__ = (
('var', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('accum', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('lr', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('grad', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T)
)
@prim_attr_register
def __init__(self, epsilon, update_slots=True):
validator.check_value_type("epsilon", epsilon, [float], self.name)
validator.check_value_type("update_slots", update_slots, [bool], self.name)
def infer_shape(self, var_shape, accum_shape, lr_shape, grad_shape):
validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name)
validator.check('var shape', var_shape, 'grad shape', grad_shape, Rel.EQ, self.name)
return var_shape, accum_shape
def infer_dtype(self, var_dtype, accum_dtype, lr_dtype, grad_dtype):
args = {'var': var_dtype, 'accum': accum_dtype, 'grad': grad_dtype}
validator.check_tensor_type_same(args, mstype.number_type, self.name)
valid_types = [mstype.float16, mstype.float32]
validator.check_scalar_or_tensor_type_same({'lr': lr_dtype}, valid_types, self.name)
return var_dtype, accum_dtype
[docs]class SparseApplyAdagrad(PrimitiveWithInfer):
r"""
Update relevant entries according to the adagrad scheme.
.. math::
accum += grad * grad
.. math::
var -= lr * grad * (1 / sqrt(accum))
Args:
lr (float): Learning rate.
update_slots (bool): If `True`, `accum` will be updated. Default: True.
use_locking (bool): If True, updating of the var and accum tensors will be protected. Default: False.
Inputs:
- **var** (Parameter) - Variable to be updated. The type must be float32.
- **accum** (Parameter) - Accum to be updated. The shape must be the same as `var`'s shape,
the type must be float32.
- **grad** (Tensor) - Gradient. The shape must be the same as `var`'s shape
except first dimension, the type must be float32.
- **indices** (Tensor) - A vector of indices into the first dimension of `var` and `accum`.
The shape of `indices` must be the same as `grad` in first dimension, the type must be int32.
Outputs:
Tuple of 2 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
>>> from mindspore import Tensor, Parameter
>>> from mindspore.ops import operations as P
>>> import mindspore.common.dtype as mstype
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.sparse_apply_adagrad = P.SparseApplyAdagrad(lr=1e-8)
>>> self.var = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="var")
>>> self.accum = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="accum")
>>> def construct(self, grad, indices):
>>> out = self.sparse_apply_adagrad(self.var, self.accum, grad, indices)
>>> return out
>>> net = Net()
>>> grad = Tensor(np.random.rand(3, 3, 3).astype(np.float32))
>>> indices = Tensor([0, 1, 2], mstype.int32)
>>> result = net(grad, indices)
"""
__mindspore_signature__ = (
('var', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('accum', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('grad', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('indices', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T1)
)
@prim_attr_register
def __init__(self, lr, update_slots=True, use_locking=False):
validator.check_value_type("lr", lr, [float], self.name)
validator.check_number_range("lr", lr, float("-inf"), float("inf"), Rel.INC_NEITHER, self.name)
validator.check_value_type("update_slots", update_slots, [bool], self.name)
validator.check_value_type("use_locking", use_locking, [bool], self.name)
def infer_shape(self, var_shape, accum_shape, grad_shape, indices_shape):
validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name)
validator.check('len of var shape', len(var_shape), 'len of grad shape', len(grad_shape), Rel.EQ, self.name)
if len(var_shape) > 1:
validator.check('var_shape[1:]', var_shape[1:], 'grad_shape[1:]', grad_shape[1:], Rel.EQ, self.name)
validator.check_integer("indices rank", len(indices_shape), 1, Rel.EQ, self.name)
validator.check('grad_shape[0]', grad_shape[0], 'indices_shape[0]', indices_shape[0], Rel.EQ, self.name)
return var_shape, accum_shape
def infer_dtype(self, var_type, accum_type, grad_type, indices_type):
args = {'var': var_type, 'accum': accum_type, 'grad': grad_type}
validator.check_tensor_type_same(args, (mstype.float32,), self.name)
validator.check_tensor_type_same({'indices': indices_type}, [mstype.int32], self.name)
return var_type, accum_type
[docs]class ApplyProximalAdagrad(PrimitiveWithInfer):
r"""
Update relevant entries according to the proximal adagrad algorithm.
.. math::
accum += grad * grad
.. math::
\text{prox_v} = var - lr * grad * \frac{1}{\sqrt{accum}}
.. math::
var = \frac{sign(\text{prox_v})}{1 + lr * l2} * \max(\left| \text{prox_v} \right| - lr * l1, 0)
Args:
use_locking (bool): If True, updating of the var and accum tensors will be protected. Default: False.
Inputs:
- **var** (Parameter) - Variable to be updated. The data type should be float.
- **accum** (Parameter) - Accum to be updated. Must has the same shape and dtype as `var`.
- **lr** (Union[Number, Tensor]): The learning rate value. It should be a scalar tensor or number.
The data type should be float.
- **l1** (Union[Number, Tensor]): l1 regularization strength, must be greater than or equal to zero.
It should be a scalar tensor or number. The data type should be float.
- **l2** (Union[Number, Tensor]): l2 regularization strength, must be greater than or equal to zero.
It should be a scalar tensor or number. The data type should be float.
- **grad** (Tensor) - Gradient. Must has the same shape and dtype as `var`.
Outputs:
Tuple of 2 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
>>> from mindspore import Tensor, Parameter
>>> from mindspore.ops import operations as P
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.apply_proximal_adagrad = P.ApplyProximalAdagrad()
>>> self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
>>> self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
>>> self.lr = 0.01
>>> self.l1 = 0.0
>>> self.l2 = 0.0
>>> def construct(self, grad):
>>> out = self.apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, self.l2, grad)
>>> return out
>>> net = Net()
>>> grad = Tensor(np.random.rand(3, 3).astype(np.float32))
>>> output = net(grad)
"""
__mindspore_signature__ = (
('var', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('accum', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('lr', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('l1', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('l2', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('grad', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T)
)
@prim_attr_register
def __init__(self, use_locking=False):
self.init_prim_io_names(inputs=['var', 'accum', 'lr', 'l1', 'l2', 'grad'], outputs=['output'])
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
def infer_shape(self, var_shape, accum_shape, lr_shape, l1_shape, l2_shape, grad_shape):
validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name)
validator.check('var shape', var_shape, 'grad shape', grad_shape, Rel.EQ, self.name)
return var_shape, accum_shape
def infer_dtype(self, var_dtype, accum_dtype, lr_dtype, l1_dtype, l2_dtype, grad_dtype):
valid_types = [mstype.float16, mstype.float32]
args = {'var': var_dtype, 'accum': accum_dtype, 'grad': grad_dtype}
validator.check_tensor_type_same(args, valid_types, self.name)
scalar_args = {"lr": lr_dtype, "l1": l1_dtype, "l2": l2_dtype}
validator.check_scalar_or_tensor_type_same(scalar_args, valid_types, self.name)
return var_dtype, accum_dtype
[docs]class SparseApplyProximalAdagrad(PrimitiveWithInfer):
r"""
Update relevant entries according to the proximal adagrad algorithm. Compared with ApplyProximalAdagrad,
an additional index tensor is input.
.. math::
accum += grad * grad
.. math::
\text{prox_v} = var - lr * grad * \frac{1}{\sqrt{accum}}
.. math::
var = \frac{sign(\text{prox_v})}{1 + lr * l2} * \max(\left| \text{prox_v} \right| - lr * l1, 0)
Args:
use_locking (bool): If True, updating of the var and accum tensors will be protected. Default: False.
Inputs:
- **var** (Parameter) - Variable tensor to be updated. The data type must be float32.
- **accum** (Parameter) - Variable tensor to be updated. Has the same dtype as `var`.
- **lr** (Union[Number, Tensor]): The learning rate value. It should be a scalar tensor or number.
The data type must be float32.
- **l1** (Union[Number, Tensor]): l1 regularization strength, must be greater than or equal to zero.
It should be a scalar tensor or number. The data type must be float32.
- **l2** (Union[Number, Tensor]): l2 regularization strength, must be greater than or equal to zero.
It should be a scalar tensor or number. The data type must be float32.
- **grad** (Tensor) - A tensor of the same type as `var`, for the gradient. The data type must be float32.
- **indices** (Tensor) - A vector of indices into the first dimension of `var` and `accum`.
Outputs:
Tuple of 2 Tensor, the updated parameters.
- **var** (Tensor) - The same shape and data type as `var`.
- **accum** (Tensor) - The same shape and data type as `accum`.
Examples:
>>> import numpy as np
>>> import mindspore.nn as nn
>>> from mindspore import Tensor, Parameter
>>> from mindspore.ops import operations as P
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.sparse_apply_proximal_adagrad = P.SparseApplyProximalAdagrad()
>>> self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
>>> self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
>>> self.lr = 0.01
>>> self.l1 = 0.0
>>> self.l2 = 0.0
>>> def construct(self, grad, indices):
>>> out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1,
self.l2, grad, indices)
>>> return out
>>> net = Net()
>>> grad = Tensor(np.random.rand(3, 3).astype(np.float32))
>>> indices = Tensor(np.ones((3,), np.int32))
>>> output = net(grad, indices)
"""
__mindspore_signature__ = (
('var', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('accum', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('lr', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('l1', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('l2', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('grad', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T),
('indices', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T1)
)
@prim_attr_register
def __init__(self, use_locking=False):
self.init_prim_io_names(inputs=['var', 'accum', 'lr', 'l1', 'l2', 'grad', 'indices'],
outputs=['output'])
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
def infer_shape(self, var_shape, accum_shape, lr_shape, l1_shape, l2_shape, grad_shape, indices_shape):
validator.check_integer("indices rank", len(indices_shape), 1, Rel.EQ, self.name)
return var_shape, accum_shape
def infer_dtype(self, var_dtype, accum_dtype, lr_dtype, l1_dtype, l2_dtype, grad_dtype, indices_dtype):
args = {'var': var_dtype, 'accum': accum_dtype, 'grad': grad_dtype}
validator.check_tensor_type_same(args, [mstype.float32], self.name)
scalar_args = {"lr": lr_dtype, "l1": l1_dtype, "l2": l2_dtype}
validator.check_scalar_or_tensor_type_same(scalar_args, [mstype.float32], self.name)
valid_types = [mstype.int16, mstype.int32, mstype.int64,
mstype.uint16, mstype.uint32, mstype.uint64]
validator.check_tensor_type_same({'indices': indices_dtype}, valid_types, self.name)
return var_dtype, accum_dtype
[docs]class LARSUpdate(PrimitiveWithInfer):
"""
Conduct lars (layer-wise adaptive rate scaling) update on the square sum of gradient.
Args:
epsilon (float): Term added to the denominator to improve numerical stability. Default: 1e-05.
hyperpara (float): Trust coefficient for calculating the local learning rate. Default: 0.001.
use_clip (bool): Whether to use clip operation for calculating the local learning rate. Default: False.
Inputs:
- **weight** (Tensor) - The weight to be updated.
- **gradient** (Tensor) - The gradient of weight, which has the same shape and dtype with weight.
- **norm_weight** (Tensor) - A scalar tensor, representing the square sum of weight.
- **norm_gradient** (Tensor) - A scalar tensor, representing the square sum of gradient.
- **weight_decay** (Union[Number, Tensor]) - Weight decay. It should be a scalar tensor or number.
- **learning_rate** (Union[Number, Tensor]) - Learning rate. It should be a scalar tensor or number.
Outputs:
Tensor, representing the new gradient.
Examples:
>>> from mindspore import Tensor
>>> from mindspore.ops import operations as P
>>> from mindspore.ops import functional as F
>>> import mindspore.nn as nn
>>> import numpy as np
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.lars = P.LARSUpdate()
>>> self.reduce = P.ReduceSum()
>>> def construct(self, weight, gradient):
>>> w_square_sum = self.reduce(F.square(weight))
>>> grad_square_sum = self.reduce(F.square(gradient))
>>> grad_t = self.lars(weight, gradient, w_square_sum, grad_square_sum, 0.0, 1.0)
>>> return grad_t
>>> weight = np.random.random(size=(2, 3)).astype(np.float32)
>>> gradient = np.random.random(size=(2, 3)).astype(np.float32)
>>> net = Net()
>>> ms_output = net(Tensor(weight), Tensor(gradient))
"""
@prim_attr_register
def __init__(self, epsilon=1e-05, hyperpara=0.001, use_clip=False):
"""init"""
validator.check_value_type("epsilon", epsilon, [float], self.name)
validator.check_value_type("hyperpara", hyperpara, [float], self.name)
validator.check_value_type("use_clip", use_clip, [bool], self.name)
def infer_shape(self, weight_shape, gradient_shape, norm_weight_shape, norm_gradient_shape, weight_decay_shape,
learning_rate_shape):
validator.check("weight shape", weight_shape, "gradient shape", gradient_shape, Rel.EQ, self.name)
validator.check("norm weight shape", norm_weight_shape, "norm gradient shape", norm_gradient_shape, Rel.EQ,
self.name)
shp_len = len(weight_decay_shape)
validator.check_integer("weight decay's rank", shp_len, 1, Rel.LE, self.name)
if shp_len == 1:
validator.check_integer("weight_decay_shape[0]", weight_decay_shape[0], 1, Rel.EQ, self.name)
shp_len = len(learning_rate_shape)
validator.check_integer("learning rate's rank", shp_len, 1, Rel.LE, self.name)
if shp_len == 1:
validator.check_integer("learning_rate_shape[0]", learning_rate_shape[0], 1, Rel.EQ, self.name)
return weight_shape
def infer_dtype(self, weight_dtype, gradient_dtype, norm_weight_dtype, norm_gradient_dtype,
weight_decay_dtype, learning_rate_dtype):
args = {"Weight dtype": weight_dtype, "gradient dtype": gradient_dtype, "norm weight dtype": norm_weight_dtype,
"norm gradient dtype": norm_gradient_dtype}
validator.check_tensor_type_same(args, [mstype.float16, mstype.float32, mstype.int16, mstype.int32], self.name)
validator.check_scalar_or_tensor_type_same({"weight_decay": weight_decay_dtype},
[mstype.float16, mstype.float32, mstype.float64], self.name)
validator.check_scalar_or_tensor_type_same({"learning_rate": learning_rate_dtype},
[mstype.float16, mstype.float32, mstype.float64], self.name)
return weight_dtype
[docs]class ApplyFtrl(PrimitiveWithInfer):
"""
Update relevant entries according to the FTRL scheme.
Args:
use_locking (bool): Use locks for update operation if True . Default: False.
Inputs:
- **var** (Tensor): The variable to be updated.
- **accum** (Tensor): The accum to be updated, must be same type and shape as `var`.
- **linear** (Tensor): The linear to be updated, must be same type and shape as `var`.
- **grad** (Tensor): Gradient.
- **lr** (Union[Number, Tensor]): The learning rate value, must be positive. Default: 0.001.
- **l1** (Union[Number, Tensor]): l1 regularization strength, must be greater than or equal to zero.
Default: 0.0.
- **l2** (Union[Number, Tensor]): l2 regularization strength, must be greater than or equal to zero.
Default: 0.0.
- **lr_power** (Union[Number, Tensor]): Learning rate power controls how the learning rate decreases
during training, must be less than or equal to zero. Use fixed learning rate if lr_power is zero.
Default: -0.5.
Outputs:
Tensor, representing the updated var.
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
>>> import numpy as np
>>> from mindspore import Parameter
>>> from mindspore import Tensor
>>> from mindspore.ops import operations as P
>>> class ApplyFtrlNet(nn.Cell):
>>> def __init__(self):
>>> super(ApplyFtrlNet, self).__init__()
>>> self.apply_ftrl = P.ApplyFtrl()
>>> self.lr = 0.001
>>> self.l1 = 0.0
>>> self.l2 = 0.0
>>> self.lr_power = -0.5
>>> self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
>>> self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
>>> self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")
>>>
>>> def construct(self, grad):
>>> out = self.apply_ftrl(self.var, self.accum, self.linear, grad, self.lr, self.l1, self.l2,
>>> self.lr_power)
>>> return out
>>>
>>> net = ApplyFtrlNet()
>>> input_x = Tensor(np.random.randint(-4, 4, (3, 3)), mindspore.float32)
>>> result = net(input_x)
[[0.67455846 0.14630564 0.160499 ]
[0.16329421 0.00415689 0.05202988]
[0.18672481 0.17418946 0.36420345]]
"""
@prim_attr_register
def __init__(self, use_locking=False):
self.init_prim_io_names(inputs=['var', 'accum', 'linear', 'grad', 'lr', 'l1', 'l2', 'lr_power'],
outputs=['output'])
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
self.is_tbe = context.get_context("device_target") == "Ascend"
def infer_shape(self, var_shape, accum_shape, linear_shape, grad_shape, lr_shape, l1_shape, l2_shape,
lr_power_shape):
validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name)
validator.check('var shape', var_shape, 'linear shape', linear_shape, Rel.EQ, self.name)
if self.is_tbe:
return var_shape, var_shape, var_shape
return var_shape
def infer_dtype(self, var_type, accum_type, linear_type, grad_type, lr_type, l1_type, l2_type, lr_power_type):
valid_types = [mstype.float16, mstype.float32]
args = {'var': var_type, 'accum': accum_type, 'linear': linear_type, 'grad': grad_type}
validator.check_tensor_type_same(args, valid_types, self.name)
validator.check_scalar_or_tensor_type_same({"lr": lr_type}, valid_types, self.name)
validator.check_scalar_or_tensor_type_same({"l1": l1_type}, valid_types, self.name)
validator.check_scalar_or_tensor_type_same({"l2": l2_type}, valid_types, self.name)
validator.check_scalar_or_tensor_type_same({"lr_power": lr_power_type}, valid_types, self.name)
if self.is_tbe:
return var_type, var_type, var_type
return var_type
[docs]class SparseApplyFtrl(PrimitiveWithInfer):
"""
Update relevant entries according to the FTRL-proximal scheme.
Args:
lr (float): The learning rate value, must be positive.
l1 (float): l1 regularization strength, must be greater than or equal to zero.
l2 (float): l2 regularization strength, must be greater than or equal to zero.
lr_power (float): Learning rate power controls how the learning rate decreases during training,
must be less than or equal to zero. Use fixed learning rate if `lr_power` is zero.
use_locking (bool): Use locks for update operation if True . Default: False.
Inputs:
- **var** (Tensor): The variable to be updated.
- **accum** (Tensor): The accum to be updated, must be same type and shape as `var`.
- **linear** (Tensor): The linear to be updated, must be same type and shape as `var`.
- **grad** (Tensor): A tensor of the same type as `var`, for the gradient.
- **indices** (Tensor): A vector of indices into the first dimension of `var` and `accum`.
The shape of `indices` must be the same as `grad` in first dimension. The type must be int32.
Outputs:
- **var** (Tensor): Tensor, has the same shape and type as `var`.
- **accum** (Tensor): Tensor, has the same shape and type as `accum`.
- **linear** (Tensor): Tensor, has the same shape and type as `linear`.
Examples:
>>> import mindspore
>>> import mindspore.nn as nn
>>> import numpy as np
>>> from mindspore import Parameter
>>> from mindspore import Tensor
>>> from mindspore.ops import operations as P
>>> class SparseApplyFtrlNet(nn.Cell):
>>> def __init__(self):
>>> super(SparseApplyFtrlNet, self).__init__()
>>> self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5)
>>> self.var = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="var")
>>> self.accum = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="accum")
>>> self.linear = Parameter(Tensor(np.random.rand(3, 3).astype(np.float32)), name="linear")
>>>
>>> def construct(self, grad, indices):
>>> out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices)
>>> return out
>>>
>>> net = SparseApplyFtrlNet()
>>> grad = Tensor(np.random.rand(3, 3).astype(np.float32))
>>> indices = Tensor(np.ones([3]), mindspore.int32)
>>> output = net(grad, indices)
"""
@prim_attr_register
def __init__(self, lr, l1, l2, lr_power, use_locking=False):
validator.check_value_type("lr", lr, [float], self.name)
validator.check_value_type("l1", l1, [float], self.name)
validator.check_value_type("l2", l2, [float], self.name)
validator.check_value_type("lr_power", lr_power, [float], self.name)
self.lr = validator.check_number_range("lr", lr, 0.0, float("inf"), Rel.INC_NEITHER, self.name)
self.l1 = validator.check_number_range("l1", l1, 0.0, float("inf"), Rel.INC_LEFT, self.name)
self.l2 = validator.check_number_range("l2", l2, 0.0, float("inf"), Rel.INC_LEFT, self.name)
self.lr_power = validator.check_number("lr_power", lr_power, 0, Rel.LE, self.name)
self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name)
def infer_shape(self, var_shape, accum_shape, linear_shape, grad_shape, indices_shape):
validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name)
validator.check('var shape', var_shape, 'linear shape', linear_shape, Rel.EQ, self.name)
if len(var_shape) > 1:
validator.check('var_shape[1:]', var_shape[1:], 'grad_shape[1:]', grad_shape[1:], Rel.EQ, self.name)
validator.check_integer("indices rank", len(indices_shape), 1, Rel.EQ, self.name)
validator.check('grad_shape[0]', grad_shape[0], 'indices_shape[0]', indices_shape[0], Rel.EQ, self.name)
return var_shape, accum_shape, linear_shape
def infer_dtype(self, var_dtype, accum_dtype, linear_dtype, grad_dtype, indices_dtype):
args = {"var_dtype": var_dtype, "accum_dtype": accum_dtype,
"linear_dtype": linear_dtype, "grad_dtype": grad_dtype}
validator.check_tensor_type_same(args, [mstype.float32], self.name)
validator.check_tensor_type_same({"indices_dtype": indices_dtype}, [mstype.int32], self.name)
return var_dtype, accum_dtype, linear_dtype
[docs]class ConfusionMulGrad(PrimitiveWithInfer):
"""
`output0` is the result of which input0 dot multily input1.
`output1` is the result of which input0 dot multily input1, then reducesum it.
Args:
axis (Union[int, tuple[int], list[int]]): The dimensions to reduce.
Default:(), reduce all dimensions. Only constant value is allowed.
keep_dims (bool):
- If True, keep these reduced dimensions and the length is 1.
- If False, don't keep these dimensions. Default:False.
Inputs:
- **input_0** (Tensor) - The input Tensor.
- **input_1** (Tensor) - The input Tensor.
- **input_2** (Tensor) - The input Tensor.
outputs:
- **output_0** (Tensor) - The same shape with `input0`.
- **output_1** (Tensor)
- If axis is (), and keep_dims is false, the output is a 0-D array representing
the sum of all elements in the input array.
- If axis is int, set as 2, and keep_dims is false,
the shape of output is :math:`(x_1,x_3,...,x_R)`.
- If axis is tuple(int), set as (2,3), and keep_dims is false,
the shape of output is :math:`(x_1,x_4,...x_R)`.
Examples:
>>> confusion_mul_grad = P.ConfusionMulGrad()
>>> input_0 = Tensor(np.random.randint(-2, 2, (2, 3)), mindspore.float32)
>>> input_1 = Tensor(np.random.randint(0, 4, (2, 3)), mindspore.float32)
>>> input_2 = Tensor(np.random.randint(-4, 0, (2, 3)), mindspore.float32)
>>> output_0, output_1 = confusion_mul_grad(input_0, input_1, input_2)
output_0:
[[ 3. 1. 0.]
[-6. 2. -2.]]
output_1:
-3.0
"""
@prim_attr_register
def __init__(self, axis=(), keep_dims=False):
self.init_prim_io_names(inputs=["input0", "input1", "input2"], outputs=["output0", "output1"])
self.axis_ = validator.check_value_type("axis", axis, [int, tuple, list], self.name)
self.keep_dims_ = validator.check_value_type("keep_dims", keep_dims, [bool], self.name)
def infer_shape(self, input0_shape, input1_shape, input2_shape):
outshape0 = input0_shape
outshape1 = _infer_shape_reduce(input1_shape, self.axis_, self.keep_dims_, self.name)
return outshape0, outshape1
def infer_dtype(self, input0_dtype, input1_dtype, input2_dtype):
validator.check_subclass("input0_dtype", input0_dtype, mstype.tensor, self.name)
validator.check_subclass("input1_dtype", input1_dtype, mstype.tensor, self.name)
validator.check_subclass("input2_dtype", input2_dtype, mstype.tensor, self.name)
return input0_dtype, input1_dtype
[docs]class Dropout(PrimitiveWithInfer):
"""
During training, randomly zeroes some of the elements of the input tensor with probability.
Args:
keep_prob (float): The keep rate, between 0 and 1, e.g. keep_prob = 0.9,
means dropping out 10% of input units.
Inputs:
- **shape** (tuple[int]) - The shape of target mask.
Outputs:
Tensor, the value of generated mask for input shape.
Examples:
>>> dropout = P.Dropout(keep_prob=0.5)
>>> in = Tensor((20, 16, 50, 50))
>>> out = dropout(in)
"""
@prim_attr_register
def __init__(self, keep_prob=0.5):
self.keep_prob = validator.check_number_range("keep_prob", keep_prob, 0, 1, Rel.INC_RIGHT, self.name)
def infer_shape(self, x_shape):
validator.check_integer("x_shape", len(x_shape), 1, Rel.GE, self.name)
mask_shape = x_shape
return x_shape, mask_shape
def infer_dtype(self, x_dtype):
valid_types = (mstype.float16, mstype.float32)
validator.check_tensor_type_same({"x_dtype": x_dtype}, valid_types, self.name)
return x_dtype, x_dtype
[docs]class DropoutGrad(PrimitiveWithInfer):
"""
The gradient of Dropout. During training, randomly zeroes some of the elements
of the input tensor with probability.
Args:
keep_prob (float): The keep rate, between 0 and 1, e.g. keep_prob = 0.9,
means dropping out 10% of input units.
Inputs:
- **shape** (tuple[int]) - The shape of target mask.
Outputs:
Tensor, the value of generated mask for input shape.
Examples:
>>> dropout_grad = P.DropoutGrad(keep_prob=0.5)
>>> in = Tensor((20, 16, 50, 50))
>>> out = dropout_grad(in)
"""
@prim_attr_register
def __init__(self, keep_prob=0.5):
self.keep_prob = validator.check_number_range("keep_prob", keep_prob, 0, 1, Rel.INC_RIGHT, self.name)
def infer_shape(self, dy_shape, mask_shape):
return dy_shape
def infer_dtype(self, dy_dtype, mask_dtype):
valid_types = (mstype.float16, mstype.float32)
validator.check_tensor_type_same({"dy_dtype": dy_dtype}, valid_types, self.name)
return dy_dtype
[docs]class CTCLoss(PrimitiveWithInfer):
"""
Calculates the CTC(Connectionist Temporal Classification) loss. Also calculates the gradient.
Args:
preprocess_collapse_repeated (bool): If True, repeated labels are collapsed prior to the CTC calculation.
Default: False.
ctc_merge_repeated (bool): If False, during CTC calculation, repeated non-blank labels will not be merged
and are interpreted as individual labels. This is a simplfied version if CTC.
Default: True.
ignore_longer_outputs_than_inputs (bool): If True, sequences with longer outputs than inputs will be ignored.
Default: False.
Inputs:
- **inputs** (Tensor) - The input Tensor should be a `3-D` tensor whose shape is
:math:`(max_time, batch_size, num_class)`. `num_class` should be `num_labels + 1` classes, `num_labels`
indicates the number of actual labels. Blank labels are reserved.
- **labels_indices** (Tensor) - The indices of labels. `labels_indices[i, :] == [b, t]` means `labels_values[i]`
stores the id for `(batch b, time t)`. The type must be int64 and rank must be 2.
- **labels_values** (Tensor) - A `1-D` input tensor. The values associated with the given batch and time. The
type must be int32. `labels_values[i]` must in the range of `[0, num_class)`.
- **sequence_length** (Tensor) - A tensor containing sequence lengths with the shape of :math:`(batch_size)`.
The type must be int32. Each value in the tensor should not greater than `max_time`.
Outputs:
- **loss** (Tensor) - A tensor containing log-probabilities, the shape is :math:`(batch_size)`. Has the same
type with `inputs`.
- **gradient** (Tensor) - The gradient of `loss`. Has the same type and shape with `inputs`.
Examples:
>>> inputs = Tensor(np.random.random((2, 2, 3)), mindspore.float32)
>>> labels_indices = Tensor(np.array([[0, 0], [1, 0]]), mindspore.int64)
>>> labels_values = Tensor(np.array([2, 2]), mindspore.int32)
>>> sequence_length = Tensor(np.array([2, 2]), mindspore.int32)
>>> ctc_loss = P.CTCLoss()
>>> output = ctc_loss(inputs, labels_indices, labels_values, sequence_length)
"""
@prim_attr_register
def __init__(self, preprocess_collapse_repeated=False, ctc_merge_repeated=True,
ignore_longer_outputs_than_inputs=False):
self.init_prim_io_names(inputs=["inputs", "labels_indices", "labels_values", "sequence_length"],
outputs=["loss", "gradient"])
validator.check_value_type("preprocess_collapse_repeated", preprocess_collapse_repeated, [bool], self.name)
self.preprocess_collapse_repeated_ = preprocess_collapse_repeated
self.ctc_merge_repeated_ = validator.check_value_type("ctc_merge_repeated", ctc_merge_repeated,
[bool], self.name)
validator.check_value_type("ignore_longer_outputs_than_inputs",
ignore_longer_outputs_than_inputs, [bool], self.name)
self.ignore_longer_outputs_than_inputs_ = ignore_longer_outputs_than_inputs
def infer_shape(self, inputs, labels_indices, labels_values, sequence_length):
validator.check_integer("inputs rank", len(inputs), 3, Rel.EQ, self.name)
validator.check_integer("labels_indices rank", len(labels_indices), 2, Rel.EQ, self.name)
validator.check_integer("labels_values rank", len(labels_values), 1, Rel.EQ, self.name)
validator.check_integer("sequence_length rank", len(sequence_length), 1, Rel.EQ, self.name)
validator.check('labels_indices size', labels_indices[0], 'labels_values size',
labels_values[0], Rel.EQ, self.name)
validator.check('inputs batch_size', inputs[1], 'sequence_length batch_size',
sequence_length[0], Rel.EQ, self.name)
batch_size = []
batch_size.append(inputs[1])
return batch_size, inputs
def infer_dtype(self, inputs, labels_indices, labels_values, sequence_length):
validator.check_subclass("inputs_dtype", inputs, mstype.tensor, self.name)
validator.check_subclass("labels_indices_dtype", labels_indices, mstype.tensor, self.name)
validator.check_subclass("labels_values_dtype", labels_values, mstype.tensor, self.name)
validator.check_subclass("sequence_length_dtype", sequence_length, mstype.tensor, self.name)
validator.check_tensor_type_same({"inputs_dtype": inputs}, [mstype.float32, mstype.double], self.name)
validator.check_tensor_type_same({"labels_indices_dtype": labels_indices}, [mstype.int64], self.name)
validator.check_tensor_type_same({"labels_values_dtype": labels_values}, [mstype.int32], self.name)
validator.check_tensor_type_same({"sequence_length_dtype": sequence_length}, [mstype.int32], self.name)
return inputs, inputs
[docs]class BasicLSTMCell(PrimitiveWithInfer):
r"""
Performs the long short term memory(LSTM) on the input.
.. math::
\begin{array}{ll} \\
i_t = \sigma(W_{ix} x_t + b_{ix} + W_{ih} h_{(t-1)} + b_{ih}) \\
f_t = \sigma(W_{fx} x_t + b_{fx} + W_{fh} h_{(t-1)} + b_{fh}) \\
\tilde{c}_t = \tanh(W_{cx} x_t + b_{cx} + W_{ch} h_{(t-1)} + b_{ch}) \\
o_t = \sigma(W_{ox} x_t + b_{ox} + W_{oh} h_{(t-1)} + b_{oh}) \\
c_t = f_t * c_{(t-1)} + i_t * \tilde{c}_t \\
h_t = o_t * \tanh(c_t) \\
\end{array}
Here :math:`\sigma` is the sigmoid function, and :math:`*` is the Hadamard product. :math:`W, b`
are learnable weights between the output and the input in the formula. For instance,
:math:`W_{ix}, b_{ix}` are the weight and bias used to transform from input :math:`x` to :math:`i`.
Details can be found in paper `LONG SHORT-TERM MEMORY
<https://www.bioinf.jku.at/publications/older/2604.pdf>`_ and
`Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling
<https://static.googleusercontent.com/media/research.google.com/zh-CN//pubs/archive/43905.pdf>`_.
Args:
keep_prob (float): If not 1.0, append `Dropout` layer on the outputs of each
LSTM layer except the last layer. Default 1.0. The range of dropout is [0.0, 1.0].
forget_bias (float): Add forget bias to forget gate biases in order to decrease former scale. Default to 1.0.
state_is_tuple (bool): If True, state is tensor tuple, containing h and c; If False, one tensor,
need split first. Default to True.
activation (str): Activation. Default to "tanh".
Inputs:
- **x** (Tensor) - Current words. Tensor of shape (`batch_size`, `input_size`).
- **h** (Tensor) - Hidden state last moment. Tensor of shape (`batch_size`, `hidden_size`).
- **c** (Tensor) - Cell state last moment. Tensor of shape (`batch_size`, `hidden_size`).
- **w** (Tensor) - Weight. Tensor of shape (`4 x hidden_size`, `input_size + hidden_size`, 1, 1).
- **b** (Tensor) - Bias. Tensor of shape (`4 x hidden_size`, 1, 1, 1).
Outputs:
- **ct** (Tensor) - Forward :math:`c_t` cache at moment `t`. Tensor of shape (`batch_size`, `hidden_size`).
- **ht** (Tensor) - Cell output. Tensor of shape (`batch_size`, `hidden_size`).
- **it** (Tensor) - Forward :math:`i_t` cache at moment `t`. Tensor of shape (`batch_size`, `hidden_size`).
- **jt** (Tensor) - Forward :math:`j_t` cache at moment `t`. Tensor of shape (`batch_size`, `hidden_size`).
- **ft** (Tensor) - Forward :math:`f_t` cache at moment `t`. Tensor of shape (`batch_size`, `hidden_size`).
- **ot** (Tensor) - Forward :math:`o_t` cache at moment `t`. Tensor of shape (`batch_size`, `hidden_size`).
- **tanhct** (Tensor) - Forward :math:`tanh c_t` cache at moment `t`.
Tensor of shape (`batch_size`, `hidden_size`).
Examples:
'block': P.BasicLSTMCell(keep_prob=1.0, forget_bias=1.0, state_is_tuple=True, activation='tanh'),
'desc_inputs': [[128, 128], [128, 128], [128, 128], [512, 256, 1, 1],[512, 1, 1, 1]],
'desc_bprop': [[128, 128], [128, 128], [128, 128], [128, 128], [128, 128], [128, 128], [128, 128]],
>>> x = Tensor(np.random.rand(128, 128).astype(np.float16))
>>> h = Tensor(np.random.rand(128, 128).astype(np.float16))
>>> c = Tensor(np.random.rand(128, 128).astype(np.float16))
>>> w = Tensor(np.random.rand(512, 256, 1, 1).astype(np.float16))
>>> b = Tensor(np.random.rand(512, 1, 1, 1).astype(np.float16))
>>> lstm = P.BasicLSTMCell(keep_prob=1.0, forget_bias=1.0, state_is_tuple=True, activation='tanh')
>>> lstm(x, h, c, w, b)
"""
@prim_attr_register
def __init__(self, keep_prob=1.0, forget_bias=1.0, state_is_tuple=True, activation='tanh'):
self.keep_prob = validator.check_value_type("keep_prob", keep_prob, [float], self.name)
self.keep_prob = validator.check_number_range("keep_prob", keep_prob, 0.0, 1.0, Rel.INC_BOTH, self.name)
self.forget_bias = validator.check_value_type("forget_bias", forget_bias, [float], self.name)
self.state_is_tuple = validator.check_value_type("state_is_tuple", state_is_tuple, [bool], self.name)
self.activation = validator.check_string("activation", activation, ['tanh'], self.name)
def infer_shape(self, x_shape, h_shape, c_shape, w_shape, b_shape):
# (batch_size, input_size)
validator.check_integer("x_shape", len(x_shape), 2, Rel.EQ, self.name)
# h and c should be same shape
validator.check_integer("h_shape", len(h_shape), 2, Rel.EQ, self.name)
validator.check("h rank", len(h_shape), "c rank", len(c_shape), Rel.EQ, self.name)
validator.check("h shape", h_shape, "c shape", c_shape, Rel.EQ, self.name)
validator.check_integer("w rank", len(w_shape), 4, Rel.EQ, self.name)
validator.check_integer("b rank", len(b_shape), 4, Rel.EQ, self.name)
validator.check("w_shape[0]", w_shape[0], "4*h_shape[1]", 4 * h_shape[1], Rel.EQ, self.name)
validator.check("w_shape[1]", w_shape[1], "x_shape[1]+h_shape[1]", x_shape[1] + h_shape[1], Rel.EQ, self.name)
validator.check("b_shape[0]", b_shape[0], "4*h_shape[1]", 4 * h_shape[1], Rel.EQ, self.name)
ct_shape = c_shape
ht_shape = h_shape
it_shape = h_shape
jt_shape = h_shape
ft_shape = h_shape
ot_shape = h_shape
tanhct_shape = h_shape
return (ct_shape, ht_shape, it_shape, jt_shape, ft_shape, ot_shape, tanhct_shape)
def infer_dtype(self, x_dtype, h_dtype, c_dtype, w_dtype, b_dtype):
validator.check_subclass("x", x_dtype, [mstype.tensor], self.name)
validator.check_subclass("h", h_dtype, [mstype.tensor], self.name)
validator.check_subclass("c", c_dtype, [mstype.tensor], self.name)
validator.check_subclass("w", w_dtype, [mstype.tensor], self.name)
validator.check_subclass("b", b_dtype, [mstype.tensor], self.name)
validator.check_type_name("x", x_dtype, [mstype.float16, mstype.float32], self.name)
validator.check_type_name("h", h_dtype, [mstype.float16, mstype.float32], self.name)
validator.check_type_name("c", c_dtype, [mstype.float16, mstype.float32], self.name)
validator.check_type_name("w", w_dtype, [mstype.float16, mstype.float32], self.name)
validator.check_type_name("b", b_dtype, [mstype.float16, mstype.float32], self.name)
return (x_dtype, x_dtype, x_dtype, x_dtype, x_dtype, x_dtype, x_dtype)
[docs]class InTopK(PrimitiveWithInfer):
r"""
Says whether the targets are in the top `k` predictions.
Args:
k (int): Special the number of top elements to look at for computing precision.
Inputs:
- **x1** (Tensor) - A 2D Tensor define the predictions of a batch of samples with float32 data type.
- **x2** (Tensor) - A 1D Tensor define the labels of a batch of samples with int32 data type.
Outputs:
Tensor, which is 1 dimension of type bool and has same shape with `x2`. for label of sample `i` in `x2`,
if label in first `k` predictions for sample `i` in `x1`, then the value is True else False.
Examples:
>>> x1 = Tensor(np.array([[1, 8, 5, 2, 7], [4, 9, 1, 3, 5]]), mindspore.float32)
>>> x2 = Tensor(np.array([1, 3]), mindspore.int32)
>>> in_top_k = P.InTopK(3)
>>> result = in_top_k(x1, x2)
[True False]
"""
@prim_attr_register
def __init__(self, k):
"""Init InTopK"""
self.init_prim_io_names(inputs=['x1', 'x2', 'k'], outputs=['y'])
validator.check_value_type("k", k, [int], self.name)
def infer_dtype(self, x1_dtype, x2_dtype):
validator.check_tensor_type_same({"x1": x1_dtype}, (mstype.float32,), self.name)
validator.check_tensor_type_same({"x2": x2_dtype}, (mstype.int32,), self.name)
return mstype.tensor_type(mstype.bool_)
def infer_shape(self, x1_shape, x2_shape):
validator.check("x1", len(x1_shape), "", 2, Rel.EQ, self.name)
validator.check("x2", len(x2_shape), "", 1, Rel.EQ, self.name)
validator.check("size of x2", x2_shape[0], "x1's first dimension", x1_shape[0], Rel.EQ, self.name)
return x2_shape