# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""adam"""
import numpy as np
from mindspore.common import dtype as mstype
from mindspore.common.initializer import initializer
from mindspore.ops import operations as P
from mindspore.ops import composite as C
from mindspore.ops import functional as F
from mindspore.common.parameter import Parameter
from mindspore.common.tensor import Tensor
from mindspore._checkparam import Validator as validator
from mindspore._checkparam import Rel
from .optimizer import Optimizer
_adam_opt = C.MultitypeFuncGraph("adam_opt")
@_adam_opt.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Bool")
def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, param, m, v, gradient, decay_flag):
"""
Update parameters.
Args:
beta1 (Tensor): The exponential decay rate for the 1st moment estimates. Should be in range (0.0, 1.0).
beta2 (Tensor): The exponential decay rate for the 2nd moment estimates. Should be in range (0.0, 1.0).
eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
lr (Tensor): Learning rate.
weight_decay_tensor (Tensor): Weight decay. Should be equal to or greater than 0.
param (Tensor): Parameters.
m (Tensor): m value of parameters.
v (Tensor): v value of parameters.
gradient (Tensor): Gradient of parameters.
Returns:
Tensor, the new value of v after updating.
"""
op_mul = P.Mul()
op_square = P.Square()
op_sqrt = P.Sqrt()
op_cast = P.Cast()
op_reshape = P.Reshape()
op_shape = P.Shape()
param_fp32 = op_cast(param, mstype.float32)
m_fp32 = op_cast(m, mstype.float32)
v_fp32 = op_cast(v, mstype.float32)
gradient_fp32 = op_cast(gradient, mstype.float32)
next_m = op_mul(beta1, m_fp32) + op_mul(op_cast(F.tuple_to_array((1.0,)), mstype.float32) - beta1, gradient_fp32)
next_v = op_mul(beta2, v_fp32) + op_mul(op_cast(F.tuple_to_array((1.0,)), mstype.float32)
- beta2, op_square(gradient_fp32))
update = next_m / (eps + op_sqrt(next_v))
if decay_flag:
update = op_mul(weight_decay_tensor, param_fp32) + update
update_with_lr = op_mul(lr, update)
next_param = param_fp32 - op_reshape(update_with_lr, op_shape(param_fp32))
next_v = F.depend(next_v, F.assign(param, op_cast(next_param, mstype.float16)))
next_v = F.depend(next_v, F.assign(m, op_cast(next_m, mstype.float16)))
next_v = F.depend(next_v, F.assign(v, op_cast(next_v, mstype.float16)))
return next_v
def _check_param_value(beta1, beta2, eps, weight_decay, prim_name):
"""Check the type of inputs."""
validator.check_value_type("beta1", beta1, [float], prim_name)
validator.check_value_type("beta2", beta2, [float], prim_name)
validator.check_value_type("eps", eps, [float], prim_name)
validator.check_value_type("weight_dacay", weight_decay, [float], prim_name)
validator.check_number_range("beta1", beta1, 0.0, 1.0, Rel.INC_NEITHER, prim_name)
validator.check_number_range("beta2", beta2, 0.0, 1.0, Rel.INC_NEITHER, prim_name)
validator.check_number_range("eps", eps, 0.0, float("inf"), Rel.INC_NEITHER, prim_name)
validator.check_number_range("weight_decay", weight_decay, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
def _check_learning_rate_value(learning_rate, end_learning_rate, decay_steps, power, prim_name):
"""Check the type of inputs."""
validator.check_value_type("learning_rate", learning_rate, [float], prim_name)
validator.check_number_range("learning_rate", learning_rate, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
validator.check_value_type("end_learning_rate", end_learning_rate, [float], prim_name)
validator.check_number_range("end_learning_rate", end_learning_rate, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
validator.check_float_positive('power', power, prim_name)
validator.check_float_legal_value('power', power, prim_name)
validator.check_integer('decay_steps', decay_steps, 0, Rel.GT, prim_name)
@_adam_opt.register("Function", "Function", "Tensor", "Tensor", "Tensor", "Tensor", "Number", "Tensor", "Tuple",
"Tensor", "Tensor", "Tensor")
def _run_opt_with_sparse(opt, sparse_opt, beta1_power, beta2_power, beta1, beta2, eps, lr, gradient, params,
moment1, moment2):
"""Apply sparse adam optimizer to the weight parameter when the gradient is sparse."""
success = True
success = F.depend(success, sparse_opt(params, moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2,
eps, gradient[1], gradient[0]))
return success
@_adam_opt.register("Function", "Function", "Tensor", "Tensor", "Tensor", "Tensor", "Number", "Tensor", "Tensor",
"Tensor", "Tensor", "Tensor")
def _run_opt_with_one_number(opt, sparse_opt, beta1_power, beta2_power, beta1, beta2, eps, lr, gradient, params,
moment1, moment2):
"""Apply adam optimizer to the weight parameter using Tensor."""
success = True
success = F.depend(success, opt(params, moment1, moment2, beta1_power, beta2_power, lr, beta1, beta2,
eps, gradient))
return success
[docs]class Adam(Optimizer):
r"""
Updates gradients by Adaptive Moment Estimation (Adam) algorithm.
The Adam algorithm is proposed in `Adam: A Method for Stochastic Optimization <https://arxiv.org/abs/1412.6980>`_.
The updating formulas are as follows,
.. math::
\begin{array}{ll} \\
m = \beta_1 * m + (1 - \beta_1) * g \\
v = \beta_2 * v + (1 - \beta_2) * g * g \\
l = \alpha * \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \\
w = w - l * \frac{m}{\sqrt{v} + \epsilon}
\end{array}
:math:`m` represents the 1st moment vector `moment1`, :math:`v` represents the 2nd moment vector `moment2`,
:math:`g` represents `gradients`, :math:`l` represents scaling factor `lr`, :math:`\beta_1, \beta_2` represent
`beta1` and `beta2`, :math:`t` represents updating step while :math:`beta_1^t` and :math:`beta_2^t` represent
`beta1_power` and `beta2_power`, :math:`\alpha` represents `learning_rate`, :math:`w` represents `params`,
:math:`\epsilon` represents `eps`.
Note:
The Adam optimizer supports separating parameter groups. Different parameter groups can set different
`learning_rate` and `weight_decay`.
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
value of weight_decay > 0. When not separating parameter groups, the `weight_decay` in the API will be
applied on the parameters if `weight_decay` > 0 and the 'beta' and 'gamma' are not in the name of parameters.
To improve parameter groups performance, the customized order of parameters can be supported.
The sparse strategy is applied while the SparseGatherV2 operator being used for forward network and the
`sparse_grad` of `Parameter` being set. The sparse feature is under continuous development. The sparse
behavior is currently performed on the CPU, weight decay is not supported.
Args:
params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
the element in `params` should be class `Parameter`. When the `params` is a list of `dict`, the "params",
"lr", "weight_decay" and "order_params" are the keys can be parsed.
- params: Required. The value should be a list of `Parameter`.
- lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
If not, the `learning_rate` in the API will be used.
- weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
will be used. If not, the `weight_decay` in the API will be used.
- order_params: Optional. If "order_params" in the keys, the value should be the order of parameters and
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
in the value of 'order_params' but not in any group will use default learning rate and default weight
decay.
learning_rate (Union[int, float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
Iterable or a Tensor and the dims of the Tensor is 1,
use dynamic learning rate, then the i-th step will
take the i-th value as the learning rate.
When the learning_rate is float or learning_rate is a
Tensor but the dims of the Tensor is 0, use fixed learning
rate. Other cases are not supported. It should be equal to
or greater than 0. Default: 1e-3.
beta1 (float): The exponential decay rate for the 1st moment estimates. Should be in range (0.0, 1.0). Default:
0.9.
beta2 (float): The exponential decay rate for the 2nd moment estimates. Should be in range (0.0, 1.0). Default:
0.999.
eps (float): Term added to the denominator to improve numerical stability. Should be greater than 0. Default:
1e-8.
use_locking (bool): Whether to enable a lock to protect updating variable tensors.
If True, updating of the var, m, and v tensors will be protected by a lock.
If False, the result is unpredictable. Default: False.
use_nesterov (bool): Whether to use Nesterov Accelerated Gradient (NAG) algorithm to update the gradients.
If True, updates the gradients using NAG.
If False, updates the gradients without using NAG. Default: False.
weight_decay (float): Weight decay (L2 penalty). It should be equal to or greater than 0. Default: 0.0.
loss_scale (float): A floating point value for the loss scale. Should be greater than 0. Default: 1.0.
Inputs:
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
Outputs:
Tensor[bool], the value is True.
Examples:
>>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay
>>> optim = nn.Adam(params=net.trainable_params())
>>>
>>> #2) Use parameter groups and set different values
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
>>> bias_params = list(filter(lambda x: 'bias' in x.name, net.trainable_params()))
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
>>> {'params': bias_params, 'lr': 0.01},
>>> {'order_params': net.trainable_params()}]
>>> opt = nn.Adam(group_params, learning_rate=0.1, weight_decay=0.0)
>>> # The conv_params's parameters will use a learning rate of default value 0.1 and a weight decay of 0.01.
>>> # The bias_params's parameters will use a learning rate of 0.01 and a weight decay of default value 0.0.
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
>>> # The parameters which in the value of 'order_params' but not in any group will use a learning rate
>>> # of default value 0.1 and a weight decay of default value 0.0.
>>>
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> model = Model(net, loss_fn=loss, optimizer=optim)
"""
def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False,
use_nesterov=False, weight_decay=0.0, loss_scale=1.0):
super(Adam, self).__init__(learning_rate, params, weight_decay, loss_scale)
_check_param_value(beta1, beta2, eps, weight_decay, self.cls_name)
validator.check_value_type("use_locking", use_locking, [bool], self.cls_name)
validator.check_value_type("use_nesterov", use_nesterov, [bool], self.cls_name)
self.beta1 = Tensor(beta1, mstype.float32)
self.beta2 = Tensor(beta2, mstype.float32)
self.beta1_power = Parameter(initializer(1, [1], mstype.float32), name="beta1_power")
self.beta2_power = Parameter(initializer(1, [1], mstype.float32), name="beta2_power")
self.eps = eps
self.moment1 = self.parameters.clone(prefix="moment1", init='zeros')
self.moment2 = self.parameters.clone(prefix="moment2", init='zeros')
self.hyper_map = C.HyperMap()
self.opt = P.Adam(use_locking, use_nesterov)
self.sparse_opt = P.SparseApplyAdam(use_locking, use_nesterov)
def construct(self, gradients):
params = self.parameters
moment1 = self.moment1
moment2 = self.moment2
gradients = self.decay_weight(gradients)
gradients = self.scale_grad(gradients)
lr = self.get_lr()
beta1_power = self.beta1_power * self.beta1
self.beta1_power = beta1_power
beta2_power = self.beta2_power * self.beta2
self.beta2_power = beta2_power
if self.is_group_lr:
success = self.map_(F.partial(_adam_opt, self.opt, self.sparse_opt, beta1_power, beta2_power,
self.beta1, self.beta2, self.eps),
lr, gradients, params, moment1, moment2)
else:
success = self.map_(F.partial(_adam_opt, self.opt, self.sparse_opt, beta1_power, beta2_power,
self.beta1, self.beta2, self.eps, lr),
gradients, params, moment1, moment2)
return success
[docs]class AdamWeightDecay(Optimizer):
"""
Implements Adam algorithm weight decay fix.
Args:
params (list[Parameter]): A list of parameter, which will be updated. The element in `params`
should be class mindspore.Parameter.
learning_rate (Union[float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
Iterable or a Tensor and the dims of the Tensor is 1,
use dynamic learning rate, then the i-th step will
take the i-th value as the learning rate.
When the learning_rate is float or learning_rate is a Tensor
but the dims of the Tensor is 0, use fixed learning rate.
Other cases are not supported. It should be equal to or
greater than 0. Default: 1e-3.
beta1 (float): The exponential decay rate for the 1st moment estimates. Default: 0.9.
Should be in range (0.0, 1.0).
beta2 (float): The exponential decay rate for the 2nd moment estimates. Default: 0.999.
Should be in range (0.0, 1.0).
eps (float): Term added to the denominator to improve numerical stability. Default: 1e-6.
Should be greater than 0.
weight_decay (float): Weight decay (L2 penalty). It should be equal to or greater than 0. Default: 0.0.
decay_filter (Function): A function to determine whether to apply weight decay on parameters. Default:
lambda x: 'LayerNorm' not in x.name and 'bias' not in x.name.
Inputs:
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
Outputs:
tuple[Parameter], the updated velocity value, the shape is the same as `params`.
Examples:
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> optim = nn.AdamWeightDecay(params=net.trainable_params())
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
"""
def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-6, weight_decay=0.0,
decay_filter=lambda x: 'beta' not in x.name and 'gamma' not in x.name):
super(AdamWeightDecay, self).__init__(learning_rate, params)
if self.is_group:
raise RuntimeError(f"The {self.cls_name} optimizer cannot support group setting.")
_check_param_value(beta1, beta2, eps, weight_decay, self.cls_name)
self.beta1 = Tensor(np.array([beta1]).astype(np.float32))
self.beta2 = Tensor(np.array([beta2]).astype(np.float32))
self.eps = Tensor(np.array([eps]).astype(np.float32))
self.weight_decay_tensor = Tensor(np.array([weight_decay]).astype(np.float32))
self.params = self.parameters
self.moments1 = self.params.clone(prefix="adam_m", init='zeros')
self.moments2 = self.params.clone(prefix="adam_v", init='zeros')
self.decay_flag = tuple(decay_filter(x) for x in self.params)
self.hyper_map = C.HyperMap()
def construct(self, gradients):
lr = self.get_lr()
updated_velocity = self.hyper_map(F.partial(_adam_opt, self.beta1, self.beta2, self.eps, lr,
self.weight_decay_tensor),
self.params, self.moments1, self.moments2, gradients, self.decay_flag)
return updated_velocity
[docs]class AdamWeightDecayDynamicLR(Optimizer):
"""
Adam Weight Decay Dynamic Learning Rate (LR).
Args:
params (list[Parameter]): A list of parameter, which will be updated. The element in `params`
should be class mindspore.Parameter.
decay_steps (int): The steps of the decay. It must be int and positive.
warmup_steps (int): The steps of lr warm up. Default: 0.
learning_rate (float): A floating point value for the learning rate. It should be equal to or
greater than 0. Default: 0.001.
end_learning_rate (float): A floating point value for the end learning rate. It should be equal
to or greater than 0. Default: 0.0001.
power (float): The Power of the polynomial. It must be positive. Default: 10.0.
beta1 (float): The exponential decay rate for the 1st moment estimates. Default: 0.9.
Should be in range (0.0, 1.0).
beta2 (float): The exponential decay rate for the 2nd moment estimates. Default: 0.999.
Should be in range (0.0, 1.0).
eps (float): Term added to the denominator to improve numerical stability. Default: 1e-6.
Should be greater than 0.
weight_decay (float): Weight decay (L2 penalty). It should be equal to or greater than 0. Default: 0.0.
decay_filter (Function): A function to determine whether to apply weight decay on parameters. Default:
lambda x: 'LayerNorm' not in x.name and 'bias' not in x.name.
Inputs:
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
Outputs:
tuple[Parameter], the updated velocity value, the shape is the same as `params`.
Examples:
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> optim = nn.AdamWeightDecayDynamicLR(params=net.trainable_params(), decay_steps=10)
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
"""
def __init__(self,
params,
decay_steps,
warmup_steps=0,
learning_rate=0.001,
end_learning_rate=0.0001,
power=10.0,
beta1=0.9,
beta2=0.999,
eps=1e-6,
weight_decay=0.0,
decay_filter=lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower()):
super(AdamWeightDecayDynamicLR, self).__init__(0.0, params)
if self.is_group:
raise RuntimeError(f"The {self.cls_name} optimizer cannot support group setting.")
_check_param_value(beta1, beta2, eps, weight_decay, self.cls_name)
_check_learning_rate_value(learning_rate, end_learning_rate, decay_steps, power, self.cls_name)
validator.check_integer('warmup_steps', warmup_steps, 0, Rel.GE, self.cls_name)
# turn them to scalar when me support scalar/tensor mix operations
self.global_step = Parameter(initializer(0, [1]), name="global_step")
self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32))
self.warmup_flag = False
if warmup_steps > 0:
self.warmup_flag = True
self.decay_steps = Tensor(np.array([decay_steps]).astype(np.float32))
self.end_learning_rate = Tensor(np.array([end_learning_rate]).astype(np.float32))
self.diff_learning_rate = Tensor(np.array([learning_rate - end_learning_rate]).astype(np.float32))
self.power = power
self.beta1 = Tensor(np.array([beta1]).astype(np.float32))
self.beta2 = Tensor(np.array([beta2]).astype(np.float32))
self.eps = Tensor(np.array([eps]).astype(np.float32))
self.weight_decay_tensor = Tensor(np.array([weight_decay]).astype(np.float32))
self.params = self.parameters
self.moments1 = self.params.clone(prefix="adam_m", init='zeros')
self.moments2 = self.params.clone(prefix="adam_v", init='zeros')
self.decay_flag = tuple(decay_filter(x) for x in self.params)
self.hyper_map = C.HyperMap()
self.min = P.Minimum()
self.pow = P.Pow()
self.greater = P.Greater()
self.one = Tensor(np.array([1.0]).astype(np.float32))
self.cast = P.Cast()
self.start_learning_rate = Tensor(np.array([learning_rate]).astype(np.float32))
def construct(self, gradients):
step = self.min(self.global_step, self.decay_steps)
p = step / self.decay_steps
lr = self.diff_learning_rate * self.pow(self.one - p, self.power) + self.end_learning_rate
if self.warmup_flag:
warmup_percent = self.global_step / self.warmup_steps
warmup_lr = self.start_learning_rate * warmup_percent
is_warmup = self.cast(self.greater(self.warmup_steps, self.global_step), mstype.float32)
lr = (self.one - is_warmup) * lr + is_warmup * warmup_lr
updated_velocity = self.hyper_map(F.partial(_adam_opt, self.beta1, self.beta2, self.eps, lr,
self.weight_decay_tensor),
self.params, self.moments1, self.moments2, gradients, self.decay_flag)
added_global_step = self.global_step + self.one
F.control_depend(lr, added_global_step)
self.global_step = added_global_step
return updated_velocity