# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" Monitor module of differential privacy training. """
import numpy as np
from scipy import special
from mindspore.train.callback import Callback
from mindarmour.utils.logger import LogUtil
from mindarmour.utils._check_param import check_int_positive, \
check_value_positive, check_param_in_range, check_param_type
LOGGER = LogUtil.get_instance()
TAG = 'DP monitor'
[docs]class PrivacyMonitorFactory:
"""
Factory class of DP training's privacy monitor.
"""
def __init__(self):
pass
[docs] @staticmethod
def create(policy, *args, **kwargs):
"""
Create a privacy monitor class.
Args:
policy (str): Monitor policy, 'rdp' and 'zcdp' are supported
by now.
args (Union[int, float, numpy.ndarray, list, str]): Parameters
used for creating a privacy monitor.
kwargs (Union[int, float, numpy.ndarray, list, str]): Keyword
parameters used for creating a privacy monitor.
Returns:
Callback, a privacy monitor.
Examples:
>>> rdp = PrivacyMonitorFactory.create(policy='rdp',
>>> num_samples=60000, batch_size=32)
"""
if policy == 'rdp':
return RDPMonitor(*args, **kwargs)
if policy == 'zcdp':
return ZCDPMonitor(*args, **kwargs)
raise ValueError("Only RDP-policy or ZCDP-policy is supported by now")
class RDPMonitor(Callback):
r"""
Compute the privacy budget of DP training based on Renyi differential
privacy (RDP) theory. According to the reference below, if a randomized
mechanism is said to have ε'-Renyi differential privacy of order α, it
also satisfies conventional differential privacy (ε, δ) as below:
.. math::
(ε'+\frac{log(1/δ)}{α-1}, δ)
Reference: `Rényi Differential Privacy of the Sampled Gaussian Mechanism
<https://arxiv.org/abs/1908.10530>`_
Args:
num_samples (int): The total number of samples in training data sets.
batch_size (int): The number of samples in a batch while training.
initial_noise_multiplier (Union[float, int]): Ratio of the standard
deviation of Gaussian noise divided by the norm_bound, which will
be used to calculate privacy spent. Default: 1.5.
max_eps (Union[float, int, None]): The maximum acceptable epsilon
budget for DP training, which is used for estimating the max
training epochs. Default: 10.0.
target_delta (Union[float, int, None]): Target delta budget for DP
training. If target_delta is set to be δ, then the privacy budget
δ would be fixed during the whole training process. Default: 1e-3.
max_delta (Union[float, int, None]): The maximum acceptable delta
budget for DP training, which is used for estimating the max
training epochs. Max_delta must be less than 1 and suggested
to be less than 1e-3, otherwise overflow would be encountered.
Default: None.
target_eps (Union[float, int, None]): Target epsilon budget for DP
training. If target_eps is set to be ε, then the privacy budget
ε would be fixed during the whole training process. Default: None.
orders (Union[None, list[int, float]]): Finite orders used for
computing rdp, which must be greater than 1. The computation result
of privacy budget would be different for various orders. In order
to obtain a tighter (smaller) privacy budget estimation, a list
of orders could be tried. Default: None.
noise_decay_mode (Union[None, str]): Decay mode of adding noise while
training, which can be None, 'Time', 'Step' or 'Exp'. Default: 'Time'.
noise_decay_rate (float): Decay rate of noise while training. Default: 6e-4.
per_print_times (int): The interval steps of computing and printing
the privacy budget. Default: 50.
dataset_sink_mode (bool): If True, all training data would be passed
to device(Ascend) one-time. If False, training data would be passed
to device after each step training. Default: False.
Examples:
>>> network = Net()
>>> net_loss = nn.SoftmaxCrossEntropyWithLogits()
>>> epochs = 2
>>> norm_clip = 1.0
>>> initial_noise_multiplier = 1.5
>>> mech = NoiseMechanismsFactory().create('AdaGaussian',
>>> norm_bound=norm_clip, initial_noise_multiplier=initial_noise_multiplier)
>>> net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
>>> model = DPModel(micro_batches=2, norm_clip=norm_clip,
>>> mech=mech, network=network, loss_fn=loss, optimizer=net_opt, metrics=None)
>>> rdp = PrivacyMonitorFactory.create(policy='rdp',
>>> num_samples=60000, batch_size=256,
>>> initial_noise_multiplier=initial_noise_multiplier)
>>> model.train(epochs, ds, callbacks=[rdp], dataset_sink_mode=False)
"""
def __init__(self, num_samples, batch_size, initial_noise_multiplier=1.5,
max_eps=10.0, target_delta=1e-3, max_delta=None,
target_eps=None, orders=None, noise_decay_mode='Time',
noise_decay_rate=6e-4, per_print_times=50, dataset_sink_mode=False):
super(RDPMonitor, self).__init__()
check_int_positive('num_samples', num_samples)
check_int_positive('batch_size', batch_size)
if batch_size >= num_samples:
msg = 'Batch_size must be less than num_samples.'
LOGGER.error(TAG, msg)
raise ValueError(msg)
check_value_positive('initial_noise_multiplier',
initial_noise_multiplier)
if max_eps is not None:
check_value_positive('max_eps', max_eps)
if target_delta is not None:
check_value_positive('target_delta', target_delta)
if max_delta is not None:
check_value_positive('max_delta', max_delta)
if max_delta >= 1:
msg = 'max_delta must be less than 1.'
LOGGER.error(TAG, msg)
raise ValueError(msg)
if target_eps is not None:
check_value_positive('target_eps', target_eps)
if orders is not None:
for item in orders:
check_value_positive('order', item)
if item <= 1:
msg = 'orders must be greater than 1'
LOGGER.error(TAG, msg)
raise ValueError(msg)
if noise_decay_mode is not None:
if noise_decay_mode not in ('Step', 'Time', 'Exp'):
msg = "Noise decay mode must be in ('Step', 'Time', 'Exp')"
LOGGER.error(TAG, msg)
raise ValueError(msg)
noise_decay_rate = check_param_type('noise_decay_rate', noise_decay_rate, float)
check_param_in_range('noise_decay_rate', noise_decay_rate, 0.0, 1.0)
check_int_positive('per_print_times', per_print_times)
check_param_type('dataset_sink_mode', dataset_sink_mode, bool)
self._num_samples = num_samples
self._batch_size = batch_size
self._initial_noise_multiplier = initial_noise_multiplier
self._max_eps = max_eps
self._target_delta = target_delta
self._max_delta = max_delta
self._target_eps = target_eps
self._orders = orders
self._noise_decay_mode = noise_decay_mode
self._noise_decay_rate = noise_decay_rate
self._rdp = 0
self._per_print_times = per_print_times
if self._target_eps is None and self._target_delta is None:
msg = 'target eps and target delta cannot both be None'
LOGGER.error(TAG, msg)
raise ValueError(msg)
if self._target_eps is not None and self._target_delta is not None:
msg = 'One of target eps and target delta must be None'
LOGGER.error(TAG, msg)
raise ValueError(msg)
if dataset_sink_mode:
self._per_print_times = int(self._num_samples / self._batch_size)
def max_epoch_suggest(self):
"""
Estimate the maximum training epochs to satisfy the predefined
privacy budget.
Returns:
int, the recommended maximum training epochs.
Examples:
>>> rdp = PrivacyMonitorFactory.create(policy='rdp',
>>> num_samples=60000, batch_size=32)
>>> suggest_epoch = rdp.max_epoch_suggest()
"""
epoch = 1
while epoch < 10000:
steps = self._num_samples // self._batch_size
eps, delta = self._compute_privacy_steps(
list(np.arange((epoch - 1)*steps, epoch*steps + 1)))
if self._max_eps is not None:
if eps <= self._max_eps:
epoch += 1
else:
break
if self._max_delta is not None:
if delta <= self._max_delta:
epoch += 1
else:
break
# reset the rdp for model training
self._rdp = 0
return epoch
def step_end(self, run_context):
"""
Compute privacy budget after each training step.
Args:
run_context (RunContext): Include some information of the model.
"""
cb_params = run_context.original_args()
cur_step = cb_params.cur_step_num
cur_step_in_epoch = (cb_params.cur_step_num - 1) % \
cb_params.batch_num + 1
if cb_params.cur_step_num % self._per_print_times == 0:
steps = np.arange(cur_step - self._per_print_times, cur_step + 1)
eps, delta = self._compute_privacy_steps(list(steps))
if np.isnan(eps) or np.isinf(eps):
msg = 'epoch: {} step: {}, invalid eps, terminating ' \
'training.'.format(
cb_params.cur_epoch_num, cur_step_in_epoch)
LOGGER.error(TAG, msg)
raise ValueError(msg)
if np.isnan(delta) or np.isinf(delta):
msg = 'epoch: {} step: {}, invalid delta, terminating ' \
'training.'.format(
cb_params.cur_epoch_num, cur_step_in_epoch)
LOGGER.error(TAG, msg)
raise ValueError(msg)
print("epoch: %s step: %s, delta is %s, eps is %s" % (
cb_params.cur_epoch_num, cur_step_in_epoch, delta, eps))
def _compute_privacy_steps(self, steps):
"""
Compute privacy budget corresponding to steps.
Args:
steps (list): Training steps.
Returns:
float, privacy budget.
"""
if self._orders is None:
self._orders = (
[1.005, 1.01, 1.02, 1.08, 1.2, 2, 5, 10, 20, 40, 80])
sampling_rate = self._batch_size / self._num_samples
noise_stddev_step = self._initial_noise_multiplier
if self._noise_decay_mode is None:
self._rdp += self._compute_rdp(sampling_rate, noise_stddev_step)*len(
steps)
else:
if self._noise_decay_mode == 'Time':
noise_stddev_step = [self._initial_noise_multiplier / (
1 + self._noise_decay_rate*step) for step in steps]
elif self._noise_decay_mode == 'Step':
noise_stddev_step = [self._initial_noise_multiplier*(
1 - self._noise_decay_rate)**step for step in steps]
elif self._noise_decay_mode == 'Exp':
noise_stddev_step = [self._initial_noise_multiplier*np.exp(
-step*self._noise_decay_rate) for step in steps]
self._rdp += sum(
[self._compute_rdp(sampling_rate, noise) for noise in
noise_stddev_step])
eps, delta = self._compute_privacy_budget(self._rdp)
return eps, delta
def _compute_rdp(self, sample_rate, noise_stddev):
"""
Compute rdp according to sampling rate, added noise and Renyi
divergence orders.
Args:
sample_rate (float): Sampling rate of each batch of samples.
noise_stddev (float): Noise multiplier.
Returns:
float or numpy.ndarray, rdp values.
"""
rdp = np.array(
[_compute_rdp_with_order(sample_rate, noise_stddev, order) for order in self._orders])
return rdp
def _compute_privacy_budget(self, rdp):
"""
Compute delta or eps for given rdp.
Args:
rdp (Union[float, numpy.ndarray]): Renyi differential privacy.
Returns:
float, delta budget or eps budget.
"""
if self._target_eps is not None:
delta = self._compute_delta(rdp)
return self._target_eps, delta
eps = self._compute_eps(rdp)
return eps, self._target_delta
def _compute_delta(self, rdp):
"""
Compute delta for given rdp and eps.
Args:
rdp (Union[float, numpy.ndarray]): Renyi differential privacy.
Returns:
float, delta budget.
"""
orders = np.atleast_1d(self._orders)
rdps = np.atleast_1d(rdp)
deltas = np.exp((rdps - self._target_eps)*(orders - 1))
min_delta = np.min(deltas)
return np.min([min_delta, 1.])
def _compute_eps(self, rdp):
"""
Compute eps for given rdp and delta.
Args:
rdp (Union[float, numpy.ndarray]): Renyi differential privacy.
Returns:
float, eps budget.
"""
orders = np.atleast_1d(self._orders)
rdps = np.atleast_1d(rdp)
eps = rdps - np.log(self._target_delta) / (orders - 1)
return np.min(eps)
class ZCDPMonitor(Callback):
r"""
Compute the privacy budget of DP training based on zero-concentrated
differential privacy theory (zcdp). According to the reference below,
if a randomized mechanism is said to have ρ-zCDP, it also satisfies
conventional differential privacy (ε, δ) as below:
.. math::
(ρ+2\sqrt{ρlog(1/δ)}, δ)
It should be noted that ZCDPMonitor is not suitable for subsampling
noise mechanisms(such as NoiseAdaGaussianRandom and NoiseGaussianRandom).
The matching noise mechanism of ZCDP will be developed in the future.
Reference: `Concentrated Differentially Private Gradient Descent with
Adaptive per-Iteration Privacy Budget <https://arxiv.org/abs/1808.09501>`_
Args:
num_samples (int): The total number of samples in training data sets.
batch_size (int): The number of samples in a batch while training.
initial_noise_multiplier (Union[float, int]): Ratio of the standard
deviation of Gaussian noise divided by the norm_bound, which will
be used to calculate privacy spent. Default: 1.5.
max_eps (Union[float, int]): The maximum acceptable epsilon budget for
DP training, which is used for estimating the max training epochs.
Default: 10.0.
target_delta (Union[float, int]): Target delta budget for DP training.
If target_delta is set to be δ, then the privacy budget δ would be
fixed during the whole training process. Default: 1e-3.
noise_decay_mode (Union[None, str]): Decay mode of adding noise while
training, which can be None, 'Time', 'Step' or 'Exp'. Default: 'Time'.
noise_decay_rate (float): Decay rate of noise while training. Default: 6e-4.
per_print_times (int): The interval steps of computing and printing
the privacy budget. Default: 50.
dataset_sink_mode (bool): If True, all training data would be passed
to device(Ascend) one-time. If False, training data would be passed
to device after each step training. Default: False.
Examples:
>>> network = Net()
>>> net_loss = nn.SoftmaxCrossEntropyWithLogits()
>>> epochs = 2
>>> norm_clip = 1.0
>>> initial_noise_multiplier = 1.5
>>> mech = NoiseMechanismsFactory().create('AdaGaussian',
>>> norm_bound=norm_clip, initial_noise_multiplier=initial_noise_multiplier)
>>> net_opt = nn.Momentum(network.trainable_params(), 0.01, 0.9)
>>> model = DPModel(micro_batches=2, norm_clip=norm_clip,
>>> mech=mech, network=network, loss_fn=loss, optimizer=net_opt, metrics=None)
>>> zcdp = PrivacyMonitorFactory.create(policy='zcdp',
>>> num_samples=60000, batch_size=256,
>>> initial_noise_multiplier=initial_noise_multiplier)
>>> model.train(epochs, ds, callbacks=[zcdp], dataset_sink_mode=False)
"""
def __init__(self, num_samples, batch_size, initial_noise_multiplier=1.5,
max_eps=10.0, target_delta=1e-3, noise_decay_mode='Time',
noise_decay_rate=6e-4, per_print_times=50, dataset_sink_mode=False):
super(ZCDPMonitor, self).__init__()
check_int_positive('num_samples', num_samples)
check_int_positive('batch_size', batch_size)
if batch_size >= num_samples:
msg = 'Batch_size must be less than num_samples.'
LOGGER.error(TAG, msg)
raise ValueError(msg)
check_value_positive('initial_noise_multiplier',
initial_noise_multiplier)
if noise_decay_mode is not None:
if noise_decay_mode not in ('Step', 'Time', 'Exp'):
msg = "Noise decay mode must be in ('Step', 'Time', 'Exp')"
LOGGER.error(TAG, msg)
raise ValueError(msg)
noise_decay_rate = check_param_type('noise_decay_rate', noise_decay_rate, float)
check_param_in_range('noise_decay_rate', noise_decay_rate, 0.0, 1.0)
check_int_positive('per_print_times', per_print_times)
check_param_type('dataset_sink_mode', dataset_sink_mode, bool)
self._num_samples = num_samples
self._batch_size = batch_size
self._initial_noise_multiplier = initial_noise_multiplier
self._max_eps = check_value_positive('max_eps', max_eps)
self._target_delta = check_param_in_range('target_delta', target_delta, 0.0, 1.0)
self._noise_decay_mode = noise_decay_mode
self._noise_decay_rate = noise_decay_rate
# initialize zcdp
self._zcdp = 0
self._per_print_times = per_print_times
if dataset_sink_mode:
self._per_print_times = int(self._num_samples / self._batch_size)
def max_epoch_suggest(self):
"""
Estimate the maximum training epochs to satisfy the predefined
privacy budget.
Returns:
int, the recommended maximum training epochs.
Examples:
>>> zcdp = PrivacyMonitorFactory.create(policy='zcdp',
>>> num_samples=60000, batch_size=32)
>>> suggest_epoch = zcdp.max_epoch_suggest()
"""
epoch = 1
while epoch < 10000:
steps = self._num_samples // self._batch_size
eps, _ = self._compute_privacy_steps(
list(np.arange((epoch - 1)*steps, epoch*steps + 1)))
if eps <= self._max_eps:
epoch += 1
else:
break
# initialize the zcdp for model training
self._zcdp = 0
return epoch
def step_end(self, run_context):
"""
Compute privacy budget after each training step.
Args:
run_context (RunContext): Include some information of the model.
"""
cb_params = run_context.original_args()
cur_step = cb_params.cur_step_num
cur_step_in_epoch = (cb_params.cur_step_num - 1) % \
cb_params.batch_num + 1
if cb_params.cur_step_num % self._per_print_times == 0:
steps = np.arange(cur_step - self._per_print_times, cur_step + 1)
eps, delta = self._compute_privacy_steps(list(steps))
if np.isnan(eps) or np.isinf(eps) or np.isnan(delta) or np.isinf(
delta):
msg = 'epoch: {} step: {}, invalid eps, terminating ' \
'training.'.format(
cb_params.cur_epoch_num, cur_step_in_epoch)
LOGGER.error(TAG, msg)
raise ValueError(msg)
print("epoch: %s step: %s, delta is %s, eps is %s" % (
cb_params.cur_epoch_num, cur_step_in_epoch, delta, eps))
def _compute_privacy_steps(self, steps):
"""
Compute privacy budget corresponding to steps.
Args:
steps (list): Training steps.
Returns:
float, privacy budget.
"""
noise_stddev_step = self._initial_noise_multiplier
if self._noise_decay_mode is None:
self._zcdp += self._compute_zcdp(noise_stddev_step)*len(
steps)
else:
if self._noise_decay_mode == 'Time':
noise_stddev_step = [self._initial_noise_multiplier / (
1 + self._noise_decay_rate*step) for step in steps]
elif self._noise_decay_mode == 'Step':
noise_stddev_step = [self._initial_noise_multiplier*(
1 - self._noise_decay_rate)**step for step in steps]
elif self._noise_decay_mode == 'Exp':
noise_stddev_step = [self._initial_noise_multiplier*np.exp(
-step*self._noise_decay_rate) for step in steps]
self._zcdp += sum(
[self._compute_zcdp(noise) for noise in noise_stddev_step])
eps = self._compute_eps(self._zcdp)
return eps, self._target_delta
def _compute_zcdp(self, noise_stddev):
"""
Compute zcdp according to added noise.
Args:
noise_stddev (float): Noise multiplier.
Returns:
float or numpy.ndarray, zcdp values.
"""
zcdp = 1 / (2*noise_stddev**2)
return zcdp
def _compute_eps(self, zcdp):
"""
Compute eps for given zcdp and delta.
Args:
zcdp (Union[float, numpy.ndarray]): zero-concentrated
differential privacy.
Returns:
float, eps budget.
"""
eps = zcdp + 2*np.sqrt(zcdp*np.log(1 / self._target_delta))
return eps
def _compute_rdp_with_order(sample_rate, noise_stddev, order):
"""
Compute rdp for each order.
Args:
sample_rate (float): Sampling probability.
noise_stddev (float): Noise multiplier.
order: The order used for computing rdp.
Returns:
float, rdp value.
"""
if float(order).is_integer():
log_integrate = -np.inf
for k in range(order + 1):
term_k = (np.log(
special.binom(order, k)) + k*np.log(sample_rate) + (
order - k)*np.log(
1 - sample_rate)) + (k*k - k) / (2*(noise_stddev**2))
log_integrate = _log_add(log_integrate, term_k)
return float(log_integrate) / (order - 1)
log_part_0, log_part_1 = -np.inf, -np.inf
k = 0
z0 = noise_stddev**2*np.log(1 / sample_rate - 1) + 1 / 2
while True:
bi_coef = special.binom(order, k)
log_coef = np.log(abs(bi_coef))
j = order - k
term_k_part_0 = log_coef + k*np.log(sample_rate) + j*np.log(1 - sample_rate) + (
k*k - k) / (2*(noise_stddev**2)) + special.log_ndtr(
(z0 - k) / noise_stddev)
term_k_part_1 = log_coef + j*np.log(sample_rate) + k*np.log(1 - sample_rate) + (
j*j - j) / (2*(noise_stddev**2)) + special.log_ndtr(
(j - z0) / noise_stddev)
if bi_coef > 0:
log_part_0 = _log_add(log_part_0, term_k_part_0)
log_part_1 = _log_add(log_part_1, term_k_part_1)
else:
log_part_0 = _log_subtract(log_part_0, term_k_part_0)
log_part_1 = _log_subtract(log_part_1, term_k_part_1)
k += 1
if np.max([term_k_part_0, term_k_part_1]) < -30:
break
return _log_add(log_part_0, log_part_1) / (order - 1)
def _log_add(x, y):
"""
Add x and y in log space.
"""
if x == -np.inf:
return y
if y == -np.inf:
return x
return np.max([x, y]) + np.log1p(np.exp(-abs(x - y)))
def _log_subtract(x, y):
"""
Subtract y from x in log space, x must be greater than y.
"""
if x <= y:
msg = 'The antilog of log functions must be positive'
LOGGER.error(TAG, msg)
raise ValueError(msg)
if y == -np.inf:
return x
return np.log1p(np.exp(y - x)) + x