# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Model."""
import numpy as np
from mindspore import log as logger
from ..common.tensor import Tensor
from ..nn.metrics import get_metrics
from .._checkparam import check_input_data, check_output_data, check_int_positive, check_bool
from .callback import _InternalCallbackParam, RunContext, _build_callbacks
from .. import context
from ..parallel._utils import _get_parallel_mode, _get_device_num, _get_global_rank, \
_get_parameter_broadcast, _device_number_check, _parameter_broadcast_check
from ..nn.metrics import Loss
from .. import nn
from ..nn.wrap.cell_wrapper import _VirtualDatasetCell
from .parallel_utils import ParallelMode
from ..common import dtype as mstype
from .dataset_helper import DatasetHelper
from . import amp
[docs]class Model:
"""
High-Level API for Training or Testing.
`Model` groups layers into an object with training and inference features.
Args:
network (Cell): The training or testing network.
loss_fn (Cell): Objective function, if loss_fn is None, the
network should contain the logic of loss and grads calculation, and the logic
of parallel if needed. Default: None.
optimizer (Cell): Optimizer for updating the weights. Default: None.
metrics (Union[dict, set]): Dict or set of metrics to be evaluated by the model during
training and testing. eg: {'accuracy', 'recall'}. Default: None.
eval_network (Cell): Network for evaluation. If not defined, `network` and `loss_fn` would be wrapped as
`eval_network`. Default: None.
eval_indexes (list): In case of defining the `eval_network`, if `eval_indexes` is None, all outputs of
`eval_network` would be passed to metrics, otherwise `eval_indexes` must contain three
elements, representing the positions of loss value, predict value and label, the loss
value would be passed to `Loss` metric, predict value and label would be passed to other
metric. Default: None.
amp_level (str): Option for argument `level` in `mindspore.amp.build_train_network`, level for mixed
precision training. Supports [O0, O2]. Default: "O0".
- O0: Do not change.
- O2: Cast network to float16, keep batchnorm run in float32, using dynamic loss scale.
loss_scale_manager (Union[None, LossScaleManager]): If None, not scale the loss, or else
scale the loss by LossScaleManager. If it is set, overwrite the level setting. It's a eyword argument.
e.g. Use `loss_scale_manager=None` to set the value.
keep_batchnorm_fp32 (bool): Keep Batchnorm run in `float32`. If set, overwrite the level setting. Default: True.
Examples:
>>> class Net(nn.Cell):
>>> def __init__(self):
>>> super(Net, self).__init__()
>>> self.conv = nn.Conv2d(3, 64, 3, has_bias=False, weight_init='normal')
>>> self.bn = nn.BatchNorm2d(64)
>>> self.relu = nn.ReLU()
>>> self.flatten = nn.Flatten()
>>> self.fc = nn.Dense(64*224*224, 12) # padding=0
>>>
>>> def construct(self, x):
>>> x = self.conv(x)
>>> x = self.bn(x)
>>> x = self.relu(x)
>>> x = self.flatten(x)
>>> out = self.fc(x)
>>> return out
>>>
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
>>> dataset = get_dataset()
>>> model.train(2, dataset)
"""
def __init__(self, network, loss_fn=None, optimizer=None, metrics=None, eval_network=None,
eval_indexes=None, amp_level="O0", **kwargs):
self._network = network
self._loss_fn = loss_fn
self._optimizer = optimizer
self._loss_scale_manager = None
self._loss_scale_manager_set = False
self._keep_bn_fp32 = True
self._check_kwargs(kwargs)
self._amp_level = amp_level
self._process_amp_args(kwargs)
self._parallel_mode = _get_parallel_mode()
self._device_number = _get_device_num()
self._global_rank = _get_global_rank()
self._parameter_broadcast = _get_parameter_broadcast()
self._train_network = self._build_train_network()
self._build_eval_network(metrics, eval_network, eval_indexes)
self._build_predict_network()
def _process_amp_args(self, kwargs):
if self._amp_level == "O0":
self._keep_bn_fp32 = False
if 'keep_batchnorm_fp32' in kwargs:
self._keep_bn_fp32 = kwargs['keep_batchnorm_fp32']
if 'loss_scale_manager' in kwargs:
self._loss_scale_manager = kwargs['loss_scale_manager']
self._loss_scale_manager_set = True
def _check_kwargs(self, kwargs):
for arg in kwargs:
if arg not in ['loss_scale_manager', 'keep_batchnorm_fp32']:
raise ValueError(f"Unsupport arg '{arg}'")
def _build_train_network(self):
"""Build train network"""
network = self._network
if self._optimizer:
if self._loss_scale_manager_set:
network = amp.build_train_network(network,
self._optimizer,
self._loss_fn,
level=self._amp_level,
loss_scale_manager=self._loss_scale_manager,
keep_batchnorm_fp32=self._keep_bn_fp32)
else:
network = amp.build_train_network(network,
self._optimizer,
self._loss_fn,
level=self._amp_level,
keep_batchnorm_fp32=self._keep_bn_fp32)
elif self._loss_fn:
network = nn.WithLossCell(network, self._loss_fn)
# If need to check if loss_fn is not None, but optimizer is None
if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
network.set_auto_parallel()
return network
def _build_eval_network(self, metrics, eval_network, eval_indexes):
"""Build the network for evaluation."""
self._metric_fns = get_metrics(metrics)
if not self._metric_fns:
return
if eval_network is not None:
if eval_indexes is not None and not (isinstance(eval_indexes, list) and len(eval_indexes) == 3):
raise ValueError("Eval_indexes must be a list or None. If eval_indexes is a list, length of it \
must be three. But got {}".format(eval_indexes))
self._eval_network = eval_network
self._eval_indexes = eval_indexes
else:
if self._loss_fn is None:
raise ValueError("loss_fn can not be None.")
self._eval_network = nn.WithEvalCell(self._network, self._loss_fn, self._amp_level == "O2")
self._eval_indexes = [0, 1, 2]
if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
self._eval_network.set_auto_parallel()
def _build_predict_network(self):
"""Build the network for prediction."""
self._predict_network = self._network
if self._parallel_mode in (ParallelMode.SEMI_AUTO_PARALLEL, ParallelMode.AUTO_PARALLEL):
self._predict_network = _VirtualDatasetCell(self._network)
self._predict_network.set_auto_parallel()
def _clear_metrics(self):
"""Clear metrics local values."""
for metric in self._metric_fns.values():
metric.clear()
def _update_metrics(self, outputs):
"""Update metrics local values."""
if not isinstance(outputs, tuple):
raise ValueError("The `outputs` is not tuple.")
if self._eval_indexes is not None and len(outputs) < 3:
raise ValueError("The length of `outputs` must be greater than or equal to 3, \
but got {}".format(len(outputs)))
for metric in self._metric_fns.values():
if self._eval_indexes is None:
metric.update(*outputs)
else:
if isinstance(metric, Loss):
metric.update(outputs[self._eval_indexes[0]])
else:
metric.update(outputs[self._eval_indexes[1]], outputs[self._eval_indexes[2]])
def _get_metrics(self):
"""Get metrics local values."""
metrics = dict()
for key, value in self._metric_fns.items():
metrics[key] = value.eval()
return metrics
def _get_scaling_sens(self):
"""get the scaling sens"""
scaling_sens = 1
if self._loss_scale_manager is not None:
scaling_sens = self._loss_scale_manager.get_loss_scale()
if self._parallel_mode == ParallelMode.DATA_PARALLEL:
scaling_sens /= self._device_number
return scaling_sens
def _exec_preprocess(self, network, is_train, phase, dataset, dataset_sink_mode):
"""Initializes dataset."""
need_wrap = False
if dataset_sink_mode:
# remove later to deal with loop sink
if not hasattr(dataset, '__ME_INITED__') and context.get_context("device_target") == "Ascend" \
and not context.get_context("enable_ge"):
need_wrap = True
if not is_train:
dataset.__loop_size__ = 1
dataset_helper = DatasetHelper(dataset, dataset_sink_mode)
# remove later to deal with loop sink
if need_wrap:
network = nn.DataWrapper(network, *(dataset_helper.types_shapes()), dataset.__ME_INITED__)
network.set_train(is_train)
network.phase = phase
return dataset_helper, network
[docs] def init(self, train_dataset=None, valid_dataset=None):
"""
Initializes compute graphs and data graphs with sink mode.
Note:
Pre-init process only supports `GRAPH_MODE` and `Ascend` target currently.
Args:
train_dataset (Dataset): A training dataset iterator. If define `train_dataset`, training graphs will be
initialized. Default: None.
valid_dataset (Dataset): A evaluating dataset iterator. If define `valid_dataset`, evaluation graphs will
be initialized, and `metrics` in `Model` can not be None. Default: None.
Examples:
>>> train_dataset = get_train_dataset()
>>> valid_dataset = get_valid_dataset()
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics={'acc'})
>>> model.init(train_dataset, valid_dataset)
>>> model.train(2, train_dataset)
>>> model.eval(valid_dataset)
"""
if context.get_context("mode") != context.GRAPH_MODE or context.get_context("device_target") != "Ascend":
raise RuntimeError('Pre-init process only supports GRAPH MODE and Ascend target currently.')
if not train_dataset and not valid_dataset:
raise ValueError('Both train_dataset and valid_dataset can not be None or empty.')
_device_number_check(self._parallel_mode, self._device_number)
if train_dataset:
_parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast)
self._train_network.set_train()
self._train_network.phase = 'train'
if self._parameter_broadcast:
self._train_network.set_broadcast_flag()
train_dataset_helper, train_network = self._exec_preprocess(self._train_network,
is_train=True,
phase='train',
dataset=train_dataset,
dataset_sink_mode=True)
self._train_network = train_network
for inputs in train_dataset_helper:
self._train_network.compile(*inputs)
break
if valid_dataset:
if not self._metric_fns:
raise RuntimeError('If define `valid_dataset`, metric fn can not be None or empty.')
self._eval_network.set_train(False)
self._eval_network.phase = 'eval'
valid_dataset_helper, eval_network = self._exec_preprocess(self._eval_network,
is_train=False,
phase='eval',
dataset=valid_dataset,
dataset_sink_mode=True)
self._eval_network = eval_network
for inputs in valid_dataset_helper:
self._eval_network.compile(*inputs)
break
def _train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True):
"""
Training.
Args:
epoch (int): Total number of iterations on the data.
train_dataset (Dataset): A training dataset iterator. If there is no
loss_fn, a tuple with multiply data (data1, data2, data3, ...) will be
returned and passed to the network. Otherwise, a tuple (data, label) will
be returned, and the data and label are passed to the network and loss
function respectively.
callbacks (list): List of callback object. Callbacks which should be executed while training. Default: None.
dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True.
Configure pynative mode, the training process will be performed with
dataset not sink.
"""
epoch = check_int_positive(epoch)
self._train_network.set_train()
if self._parameter_broadcast:
self._train_network.set_broadcast_flag()
# build callback list
list_callback = _build_callbacks(callbacks)
cb_params = _InternalCallbackParam()
cb_params.train_network = self._train_network
cb_params.epoch_num = epoch
cb_params.batch_num = train_dataset.get_dataset_size()
cb_params.mode = "train"
cb_params.loss_fn = self._loss_fn
cb_params.optimizer = self._optimizer
cb_params.parallel_mode = self._parallel_mode
cb_params.device_number = self._device_number
cb_params.train_dataset = train_dataset
cb_params.list_callback = list_callback
if dataset_sink_mode:
if context.get_context("mode") == context.PYNATIVE_MODE:
logger.warning("The pynative mode cannot support dataset sink mode currently."
"So the training process will be performed with dataset not sink.")
self._train_process(epoch, train_dataset, list_callback, cb_params)
else:
self._train_dataset_sink_process(epoch, train_dataset, list_callback, cb_params)
else:
self._train_process(epoch, train_dataset, list_callback, cb_params)
def _train_dataset_sink_process(self, epoch, train_dataset, list_callback=None, cb_params=None):
"""
Training process. The data would be passed to network through dataset channel.
Args:
epoch (int): Total number of iterations on the data.
train_dataset (Dataset): A training dataset iterator. If there is no
loss_fn, a tuple with multiply data (data1, data2, data3, ...) should be
returned and passed to the network. Otherwise, a tuple (data, label) should
be returned, and the data and label are passed to the network and loss
function respectively.
list_callback (_ListCallback): Executor of callback list. Default: None.
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
"""
dataset_helper, train_network = self._exec_preprocess(self._train_network,
is_train=True,
phase='train',
dataset=train_dataset,
dataset_sink_mode=True)
self._train_network = train_network
cb_params.train_network = self._train_network
cb_params.cur_step_num = 0
loop_size = dataset_helper.loop_size()
run_context = RunContext(cb_params)
list_callback.begin(run_context)
# used to stop training for early stop, such as stopAtTIme or stopATStep
should_stop = False
for i in range(epoch):
cb_params.cur_epoch_num = i + 1
list_callback.epoch_begin(run_context)
# for data sink dataset_helper only iter once, other wise iter epoch_size times.
for inputs in dataset_helper:
cb_params.cur_step_num += loop_size
list_callback.step_begin(run_context)
outputs = self._train_network(*inputs)
cb_params.net_outputs = outputs
list_callback.step_end(run_context)
list_callback.epoch_end(run_context)
should_stop = should_stop or run_context.get_stop_requested()
if should_stop:
break
list_callback.end(run_context)
def _train_process(self, epoch, train_dataset, list_callback=None, cb_params=None):
"""
Training process. The data would be passed to network directly.
Args:
epoch (int): Total number of iterations on the data.
train_dataset (Dataset): A training dataset iterator. If there is no
loss_fn, a tuple with multiply data (data1, data2, data3, ...) should be
returned and passed to the network. Otherwise, a tuple (data, label) should
be returned, and the data and label are passed to the network and loss
function respectively.
list_callback (_ListCallback): Executor of callback list. Default: None.
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
"""
dataset_helper, _ = self._exec_preprocess(self._train_network,
is_train=True,
phase='train',
dataset=train_dataset,
dataset_sink_mode=False)
cb_params.cur_step_num = 0
run_context = RunContext(cb_params)
list_callback.begin(run_context)
# used to stop training for early stop, such as stopAtTIme or stopATStep
should_stop = False
for i in range(epoch):
cb_params.cur_epoch_num = i + 1
list_callback.epoch_begin(run_context)
for next_element in dataset_helper:
len_element = len(next_element)
if self._loss_fn and len_element != 2:
raise ValueError("when loss_fn is not None, train_dataset should"
"return two elements, but got {}".format(len_element))
cb_params.cur_step_num += 1
list_callback.step_begin(run_context)
overflow = False
if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update():
scaling_sens = self._get_scaling_sens()
next_element = tuple(next_element) + (Tensor(scaling_sens, mstype.float32),)
outputs = self._train_network(*next_element)
cb_params.net_outputs = outputs
if self._loss_scale_manager and self._loss_scale_manager.get_drop_overflow_update():
_, overflow, _ = outputs
overflow = np.all(overflow.asnumpy())
self._loss_scale_manager.update_loss_scale(overflow)
list_callback.step_end(run_context)
should_stop = should_stop or run_context.get_stop_requested()
if should_stop:
break
train_dataset.reset()
list_callback.epoch_end(run_context)
should_stop = should_stop or run_context.get_stop_requested()
if should_stop:
break
list_callback.end(run_context)
[docs] def train(self, epoch, train_dataset, callbacks=None, dataset_sink_mode=True):
"""
Training API where the iteration is controlled by python front-end.
When setting pynative mode, the training process will be performed with dataset not sink.
Note:
CPU is not supported when dataset_sink_mode is true.
If dataset_sink_mode is True, epoch of training should be equal to the count of repeat
operation in dataset processing. Otherwise, errors could occur since the amount of data
is not the amount training requires.
If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features
of data will be transferred one by one. The limitation of data transmission per time is 256M.
Args:
epoch (int): Total number of iterations on the data.
train_dataset (Dataset): A training dataset iterator. If there is no
loss_fn, a tuple with multiply data (data1, data2, data3, ...) should be
returned and passed to the network. Otherwise, a tuple (data, label) should
be returned, and the data and label are passed to the network and loss
function respectively.
callbacks (list): List of callback object. Callbacks which should be excuted while training. Default: None.
dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True.
Configure pynative mode, the training process will be performed with
dataset not sink.
Examples:
>>> dataset = get_dataset()
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
>>> loss_scale_manager = FixedLossScaleManager()
>>> optim = Momentum(params=net.trainable_params(), learning_rate=0.1, momentum=0.9)
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None, loss_scale_manager=loss_scale_manager)
>>> model.train(2, dataset)
"""
repeat_count = train_dataset.get_repeat_count()
if epoch != repeat_count and dataset_sink_mode is True:
logger.warning(f"The epoch_size {epoch} is not the same with dataset repeat_count {repeat_count}")
check_bool(dataset_sink_mode)
_device_number_check(self._parallel_mode, self._device_number)
_parameter_broadcast_check(self._parallel_mode, self._parameter_broadcast)
self._train(epoch,
train_dataset,
callbacks=callbacks,
dataset_sink_mode=dataset_sink_mode)
def _eval_dataset_sink_process(self, valid_dataset, list_callback=None, cb_params=None):
"""
Evaluation. The data would be passed to network through dataset channel.
Args:
valid_dataset (Dataset): Dataset to evaluate the model.
list_callback (ListCallback): Executor of callback list. Default: None.
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
Returns:
Dict, returns the loss value & metrics values for the model in test mode.
"""
run_context = RunContext(cb_params)
dataset_helper, eval_network = self._exec_preprocess(self._eval_network,
is_train=False,
phase='eval',
dataset=valid_dataset,
dataset_sink_mode=True)
self._eval_network = eval_network
cb_params.eval_network = self._eval_network
list_callback.begin(run_context)
for inputs in dataset_helper:
cb_params.cur_step_num += 1
list_callback.step_begin(run_context)
outputs = self._eval_network(*inputs)
cb_params.net_outputs = outputs
list_callback.step_end(run_context)
self._update_metrics(outputs)
metrics = self._get_metrics()
cb_params.metrics = metrics
list_callback.end(run_context)
return metrics
def _eval_process(self, valid_dataset, list_callback=None, cb_params=None):
"""
Evaluation. The data would be passed to network directly.
Args:
valid_dataset (Dataset): Dataset to evaluate the model.
list_callback (ListCallback): Executor of callback list. Default: None.
cb_params (_InternalCallbackParam): Callback parameters. Default: None.
Returns:
Dict, returns the loss value & metrics values for the model in test mode.
"""
run_context = RunContext(cb_params)
list_callback.begin(run_context)
dataset_helper, _ = self._exec_preprocess(self._eval_network,
is_train=False,
phase='eval',
dataset=valid_dataset,
dataset_sink_mode=False)
for next_element in dataset_helper:
cb_params.cur_step_num += 1
list_callback.step_begin(run_context)
outputs = self._eval_network(*next_element)
cb_params.net_outputs = outputs
list_callback.step_end(run_context)
self._update_metrics(outputs)
metrics = self._get_metrics()
cb_params.metrics = metrics
list_callback.end(run_context)
return metrics
[docs] def eval(self, valid_dataset, callbacks=None, dataset_sink_mode=True):
"""
Evaluation API where the iteration is controlled by python front-end.
Configure to pynative mode, the evaluation will be performed with dataset non-sink mode.
Note:
CPU is not supported when dataset_sink_mode is true.
If dataset_sink_mode is True, data will be sent to device. If device is Ascend, features
of data will be transferred one by one. The limitation of data transmission per time is 256M.
Args:
valid_dataset (Dataset): Dataset to evaluate the model.
callbacks (list): List of callback object. Callbacks which should be excuted
while training. Default: None.
dataset_sink_mode (bool): Determines whether to pass the data through dataset channel. Default: True.
Returns:
Dict, returns the loss value & metrics values for the model in test mode.
Examples:
>>> dataset = get_dataset()
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True)
>>> model = Model(net, loss_fn=loss, optimizer=None, metrics={'acc'})
>>> model.eval(dataset)
"""
check_bool(dataset_sink_mode)
_device_number_check(self._parallel_mode, self._device_number)
if not self._metric_fns:
raise ValueError("metric fn can not be None or empty.")
list_callback = _build_callbacks(callbacks)
cb_params = _InternalCallbackParam()
cb_params.eval_network = self._eval_network
cb_params.valid_dataset = valid_dataset
cb_params.batch_num = valid_dataset.get_dataset_size()
cb_params.mode = "eval"
cb_params.cur_step_num = 0
self._eval_network.set_train(mode=False)
self._eval_network.phase = 'eval'
self._clear_metrics()
if dataset_sink_mode:
return self._eval_dataset_sink_process(valid_dataset, list_callback, cb_params)
return self._eval_process(valid_dataset, list_callback, cb_params)
[docs] def predict(self, *predict_data):
"""
Generates output predictions for the input samples.
Data could be single tensor, or list of tensor, tuple of tensor.
Note:
Batch data should be put together in one tensor.
Args:
predict_data (Tensor): Tensor of predict data. can be array, list or tuple.
Returns:
Tensor, array(s) of predictions.
Examples:
>>> input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]), mindspore.float32)
>>> model = Model(Net())
>>> model.predict(input_data)
"""
self._predict_network.set_train(False)
check_input_data(*predict_data, data_class=Tensor)
result = self._predict_network(*predict_data)
check_output_data(result)
return result
__all__ = ["Model"]