Source code for mindspore.ops.operations.other_ops

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""Other operators."""
from ..._c_expression import signature_rw as sig_rw
from ..._c_expression import signature_kind as sig_kind
from ..._checkparam import Validator as validator, Rel
from ...common import dtype as mstype
from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register


[docs]class Assign(PrimitiveWithInfer): """ Assign `Parameter` with a value. Inputs: - **variable** (Parameter) - The `Parameter`. - **value** (Tensor) - The value to assign. Outputs: Tensor, has the same type as original `variable`. Examples: >>> class Net(nn.Cell): >>> def __init__(self): >>> super(Net, self).__init__() >>> self.y = mindspore.Parameter(Tensor([1.0], mindspore.float32), name="y") >>> >>> def construct(self, x): >>> P.Assign()(self.y, x) >>> return x >>> x = Tensor([2.0], mindspore.float32) >>> net = Net() >>> net(x) """ __mindspore_signature__ = ( ('variable', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD), ('value', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD) ) @prim_attr_register def __init__(self): pass def infer_shape(self, variable, value): return variable def infer_dtype(self, variable, value): return variable
[docs]class BoundingBoxEncode(PrimitiveWithInfer): """ Encode bounding boxes locations. Args: means (tuple): Means for encoding bounding boxes calculation. Default: (0.0, 0.0, 0.0, 0.0). stds (tuple): Stds for encoding bounding boxes calculation. Default: (1.0, 1.0, 1.0, 1.0). Inputs: - **anchor_box** (Tensor) - Anchor boxes. - **groundtruth_box** (Tensor) - Ground truth boxes. Outputs: Tensor, encoded bounding boxes. Examples: >>> anchor_box = Tensor([[4,1,2,1],[2,2,2,3]],mindspore.float32) >>> groundtruth_box = Tensor([[3,1,2,2],[1,2,1,4]],mindspore.float32) >>> boundingbox_encode = P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)) >>> boundingbox_encode(anchor_box, groundtruth_box) [[5.0000000e-01 5.0000000e-01 -6.5504000e+04 6.9335938e-01] [-1.0000000e+00 2.5000000e-01 0.0000000e+00 4.0551758e-01]] """ @prim_attr_register def __init__(self, means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)): validator.check_value_type('means', means, [tuple], self.name) validator.check_value_type('stds', stds, [tuple], self.name) validator.check_integer("means len", len(means), 4, Rel.EQ, self.name) validator.check_integer("stds len", len(stds), 4, Rel.EQ, self.name) def infer_shape(self, anchor_box, groundtruth_box): validator.check('anchor_box shape[0]', anchor_box[0], 'groundtruth_box shape[0]', groundtruth_box[0], Rel.EQ, self.name) validator.check_integer('anchor_box shape[1]', anchor_box[1], 4, Rel.EQ, self.name) validator.check_integer('groundtruth_box shape[1]', groundtruth_box[1], 4, Rel.EQ, self.name) return anchor_box def infer_dtype(self, anchor_box, groundtruth_box): args = {"anchor_box": anchor_box, "groundtruth_box": groundtruth_box} validator.check_tensor_type_same(args, mstype.number_type, self.name) return anchor_box
[docs]class BoundingBoxDecode(PrimitiveWithInfer): """ Decode bounding boxes locations. Args: means (tuple): The means of deltas calculation. Default: (0.0, 0.0, 0.0, 0.0). stds (tuple): The standard deviations of deltas calculation. Default: (1.0, 1.0, 1.0, 1.0). max_shape (tuple): The max size limit for decoding box calculation. wh_ratio_clip (float): The limit of width and height ratio for decoding box calculation. Default: 0.016. Inputs: - **anchor_box** (Tensor) - Anchor boxes. - **deltas** (Tensor) - Delta of boxes. Outputs: Tensor, decoded boxes. Examples: >>> anchor_box = Tensor([[4,1,2,1],[2,2,2,3]],mindspore.float32) >>> deltas = Tensor([[3,1,2,2],[1,2,1,4]],mindspore.float32) >>> boundingbox_decode = P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), >>> max_shape=(768, 1280), wh_ratio_clip=0.016) >>> boundingbox_decode(anchor_box, deltas) [[4.1953125 0. 0. 5.1953125] [2.140625 0. 3.859375 60.59375]] """ @prim_attr_register def __init__(self, max_shape, means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), wh_ratio_clip=0.016): validator.check_value_type('means', means, [tuple], self.name) validator.check_value_type('stds', stds, [tuple], self.name) validator.check_value_type('wh_ratio_clip', wh_ratio_clip, [float], self.name) validator.check_integer("means len", len(means), 4, Rel.EQ, self.name) validator.check_integer("stds len", len(stds), 4, Rel.EQ, self.name) if max_shape is not None: validator.check_value_type('max_shape', max_shape, [tuple], self.name) validator.check_integer("max_shape len", len(max_shape), 2, Rel.EQ, self.name) def infer_shape(self, anchor_box, deltas): validator.check('anchor_box shape[0]', anchor_box[0], 'deltas shape[0]', deltas[0], Rel.EQ, self.name) validator.check_integer('anchor_box shape[1]', anchor_box[1], 4, Rel.EQ, self.name) validator.check_integer('deltas shape[1]', deltas[1], 4, Rel.EQ, self.name) return anchor_box def infer_dtype(self, anchor_box, deltas): args = {"anchor_box": anchor_box, "deltas": deltas} validator.check_tensor_type_same(args, mstype.number_type, self.name) return anchor_box
[docs]class CheckValid(PrimitiveWithInfer): """ Check bounding box. Check whether the bounding box cross data and data border. Inputs: - **bboxes** (Tensor) - Bounding boxes tensor with shape (N, 4). - **img_metas** (Tensor) - Raw image size information, format (height, width, ratio). Outputs: Tensor, the valided tensor. Examples: >>> import mindspore >>> import mindspore.nn as nn >>> import numpy as np >>> from mindspore import Tensor >>> from mindspore.ops import operations as P >>> class Net(nn.Cell): >>> def __init__(self): >>> super(Net, self).__init__() >>> self.check_valid = P.CheckValid() >>> def construct(self, x, y): >>> valid_result = self.check_valid(x, y) >>> return valid_result >>> >>> bboxes = Tensor(np.linspace(0, 6, 12).reshape(3, 4), mindspore.float32) >>> img_metas = Tensor(np.array([2, 1, 3]), mindspore.float32) >>> net = Net() >>> result = net(bboxes, img_metas) [True False False] """ @prim_attr_register def __init__(self): self.init_prim_io_names(inputs=['bboxes', 'img_metas'], outputs=['output']) def infer_shape(self, bboxes_shape, metas_shape): validator.check("bboxes rank", len(bboxes_shape), "", 2, Rel.EQ, self.name) validator.check("bboxes_shape[-1]", bboxes_shape[-1], "", 4, Rel.EQ, self.name) validator.check("img_metas rank", len(metas_shape), "", 1, Rel.EQ, self.name) validator.check("img_metas shape[0]", metas_shape[0], "", 3, Rel.EQ, self.name) return bboxes_shape[:-1] def infer_dtype(self, bboxes_type, metas_type): return mstype.bool_
[docs]class IOU(PrimitiveWithInfer): r""" Calculate intersection over union for boxes. Compute the intersection over union (IOU) or the intersection over foreground (IOF) based on the ground-truth and predicted regions. .. math:: \text{IOU} = \frac{\text{Area of Overlap}}{\text{Area of Union}} \text{IOF} = \frac{\text{Area of Overlap}}{\text{Area of Ground Truth}} Args: mode (string): The mode is used to specify the calculation method, now support 'iou' (intersection over union) or 'iof' (intersection over foreground) mode. Default: 'iou'. Inputs: - **anchor_boxes** (Tensor) - Anchor boxes, tensor of shape (N, 4). "N" indicates the number of anchor boxes, and the value "4" refers to "x0", "x1", "y0", and "y1". - **gt_boxes** (Tensor) - Ground truth boxes, tensor of shape (M, 4). "M" indicates the number of ground truth boxes, and the value "4" refers to "x0", "x1", "y0", and "y1". Outputs: Tensor, the 'iou' values, tensor of shape (M, N). Raises: KeyError: When `mode` is not 'iou' or 'iof'. Examples: >>> iou = P.IOU() >>> anchor_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float32) >>> gt_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float32) >>> iou(anchor_boxes, gt_boxes) """ @prim_attr_register def __init__(self, mode='iou'): if mode not in {'iou', 'iof'}: raise KeyError("Mode only support 'iou' or 'iof'.") self.init_prim_io_names(inputs=['anchor_boxes', 'gt_boxes'], outputs=['overlap']) def infer_shape(self, anchor_boxes, gt_boxes): validator.check_integer('gt_boxes shape[1]', gt_boxes[1], 4, Rel.EQ, self.name) validator.check_integer('anchor_boxes shape[1]', anchor_boxes[1], 4, Rel.EQ, self.name) validator.check_integer('anchor_boxes rank', len(anchor_boxes), 2, Rel.EQ, self.name) validator.check_integer('gt_boxes rank', len(gt_boxes), 2, Rel.EQ, self.name) iou = [gt_boxes[0], anchor_boxes[0]] return iou def infer_dtype(self, anchor_boxes, gt_boxes): args = {"anchor_boxes": anchor_boxes, "gt_boxes": gt_boxes} validator.check_tensor_type_same(args, (mstype.float16,), self.name) return anchor_boxes
[docs]class MakeRefKey(Primitive): """ Make a RefKey instance by string. RefKey stores the name of Parameter, can be passed through the functions, and used for Assign target. Args: tag (str): Parameter name to make the RefKey. Inputs: No input. Outputs: RefKeyType, made from the Parameter name. Examples: >>> from mindspore.ops import functional as F >>> class Net(nn.Cell): >>> def __init__(self): >>> super(Net, self).__init__() >>> self.y = mindspore.Parameter(Tensor(np.ones([6, 8, 10]), mindspore.int32), name="y") >>> self.make_ref_key = P.MakeRefKey("y") >>> >>> def construct(self, x): >>> key = self.make_ref_key() >>> ref = F.make_ref(key, x, self.y) >>> return ref * x >>> >>> x = Tensor(np.ones([3, 4, 5]), mindspore.int32) >>> net = Net() >>> net(x) """ @prim_attr_register def __init__(self, tag): validator.check_value_type('tag', tag, (str,), self.name) def __call__(self): pass
[docs]class CheckBprop(PrimitiveWithInfer): """ Checks whether data type and shape of corresponding element from tuple x and y are the same. Raises: TypeError: If not the same. Inputs: - **input_x** (tuple[Tensor]) - The input_x contains the outputs of bprop to be checked. - **input_y** (tuple[Tensor]) - The input_y contains the inputs of bprop to check against. Outputs: (tuple[Tensor]), the input_x, if data type and shape of corresponding elements from `input_x` and `input_y` are the same. Examples: >>> input_x = (Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32),) >>> input_y = (Tensor(np.array([[2, 2], [2, 2]]), mindspore.float32),) >>> out = P.CheckBprop()(input_x, input_y) """ @prim_attr_register def __init__(self): """init CheckBprop""" def infer_shape(self, xshapes, yshapes): tips = f'Bprop of {self.prim_to_check}' if len(xshapes) < len(yshapes): raise TypeError(f"{tips}, the size of output should be {len(yshapes)}," f" but got {len(xshapes)}.") checking_range = len(yshapes) for i in range(checking_range): xshape = xshapes[i] yshape = yshapes[i] if not xshape or not yshape: continue if xshape != yshape: raise TypeError(f"{tips}, the shape of {i}th output should be {yshape}," f" but got {xshape}.") return xshapes def infer_dtype(self, xdtypes, ydtypes): tips = f'Bprop of {self.prim_to_check}' if len(xdtypes) < len(ydtypes): raise TypeError(f"{tips}, the size of output should be {len(ydtypes)}," f" but got {len(xdtypes)}.") checking_range = len(ydtypes) for i in range(checking_range): xdtype = xdtypes[i] ydtype = ydtypes[i] if isinstance(xdtype, mstype.anything_type) or isinstance(ydtype, mstype.anything_type): continue if isinstance(ydtype, mstype.function_type): if not isinstance(xdtype, mstype.env_type_type): raise TypeError(f"{tips}, the dtype of {i}th output should be {mstype.env_type_type}," f" but got {xdtype}.") continue if xdtype != ydtype: raise TypeError(f"{tips}, the dtype of {i}th output should be {ydtype}," f" but got {xdtype}.") return xdtypes