Source code for mindspore.nn.layer.image

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""image"""
import numpy as np
import mindspore.common.dtype as mstype
from mindspore.common.tensor import Tensor
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.ops.primitive import constexpr
from mindspore._checkparam import Validator as validator
from mindspore._checkparam import Rel
from ..cell import Cell

__all__ = ['ImageGradients', 'SSIM', 'PSNR']

[docs]class ImageGradients(Cell): r""" Returns two tensors, the first is along the height dimension and the second is along the width dimension. Assume an image shape is :math:`h*w`. The gradients along the height and the width are :math:`dy` and :math:`dx`, respectively. .. math:: dy[i] = \begin{cases} image[i+1, :]-image[i, :], &if\ 0<=i<h-1 \cr 0, &if\ i==h-1\end{cases} dx[i] = \begin{cases} image[:, i+1]-image[:, i], &if\ 0<=i<w-1 \cr 0, &if\ i==w-1\end{cases} Inputs: - **images** (Tensor) - The input image data, with format 'NCHW'. Outputs: - **dy** (Tensor) - vertical image gradients, the same type and shape as input. - **dx** (Tensor) - horizontal image gradients, the same type and shape as input. Examples: >>> net = nn.ImageGradients() >>> image = Tensor(np.array([[[[1,2],[3,4]]]]), dtype=mstype.int32) >>> net(image) [[[[2,2] [0,0]]]] [[[[1,0] [1,0]]]] """ def __init__(self): super(ImageGradients, self).__init__() def construct(self, images): check = _check_input_4d(F.shape(images), "images", self.cls_name) images = F.depend(images, check) batch_size, depth, height, width = P.Shape()(images) dy = images[:, :, 1:, :] - images[:, :, :height - 1, :] dy_last = P.Fill()(P.DType()(images), (batch_size, depth, 1, width), 0) dy = P.Concat(2)((dy, dy_last)) dx = images[:, :, :, 1:] - images[:, :, :, :width - 1] dx_last = P.Fill()(P.DType()(images), (batch_size, depth, height, 1), 0) dx = P.Concat(3)((dx, dx_last)) return dy, dx
def _convert_img_dtype_to_float32(img, max_val): """convert img dtype to float32""" # Ususally max_val is 1.0 or 255, we will do the scaling if max_val > 1. # We will scale img pixel value if max_val > 1. and just cast otherwise. ret = F.cast(img, mstype.float32) max_val = F.scalar_cast(max_val, mstype.float32) if max_val > 1.: scale = 1. / max_val ret = ret * scale return ret @constexpr def _gauss_kernel_helper(filter_size): """gauss kernel helper""" filter_size = F.scalar_cast(filter_size, mstype.int32) coords = () for i in range(filter_size): i_cast = F.scalar_cast(i, mstype.float32) offset = F.scalar_cast(filter_size-1, mstype.float32)/2.0 element = i_cast-offset coords = coords+(element,) g = np.square(coords).astype(np.float32) g = Tensor(g) return filter_size, g @constexpr def _check_input_4d(input_shape, param_name, func_name): if len(input_shape) != 4: raise ValueError(f"{func_name} {param_name} should be 4d, but got shape {input_shape}") return True
[docs]class SSIM(Cell): r""" Returns SSIM index between img1 and img2. Its implementation is based on Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). `Image quality assessment: from error visibility to structural similarity <https://ieeexplore.ieee.org/document/1284395>`_. IEEE transactions on image processing. .. math:: l(x,y)&=\frac{2\mu_x\mu_y+C_1}{\mu_x^2+\mu_y^2+C_1}, C_1=(K_1L)^2.\\ c(x,y)&=\frac{2\sigma_x\sigma_y+C_2}{\sigma_x^2+\sigma_y^2+C_2}, C_2=(K_2L)^2.\\ s(x,y)&=\frac{\sigma_{xy}+C_3}{\sigma_x\sigma_y+C_3}, C_3=C_2/2.\\ SSIM(x,y)&=l*c*s\\&=\frac{(2\mu_x\mu_y+C_1)(2\sigma_{xy}+C_2}{(\mu_x^2+\mu_y^2+C_1)(\sigma_x^2+\sigma_y^2+C_2)}. Args: max_val (Union[int, float]): The dynamic range of the pixel values (255 for 8-bit grayscale images). Default: 1.0. filter_size (int): The size of the Gaussian filter. Default: 11. filter_sigma (float): The standard deviation of Gaussian kernel. Default: 1.5. k1 (float): The constant used to generate c1 in the luminance comparison function. Default: 0.01. k2 (float): The constant used to generate c2 in the contrast comparison function. Default: 0.03. Inputs: - **img1** (Tensor) - The first image batch with format 'NCHW'. It should be the same shape and dtype as img2. - **img2** (Tensor) - The second image batch with format 'NCHW'. It should be the same shape and dtype as img1. Outputs: Tensor, has the same dtype as img1. It is a 1-D tensor with shape N, where N is the batch num of img1. Examples: >>> net = nn.SSIM() >>> img1 = Tensor(np.random.random((1,3,16,16))) >>> img2 = Tensor(np.random.random((1,3,16,16))) >>> ssim = net(img1, img2) """ def __init__(self, max_val=1.0, filter_size=11, filter_sigma=1.5, k1=0.01, k2=0.03): super(SSIM, self).__init__() validator.check_value_type('max_val', max_val, [int, float], self.cls_name) validator.check_number('max_val', max_val, 0.0, Rel.GT, self.cls_name) self.max_val = max_val self.filter_size = validator.check_integer('filter_size', filter_size, 1, Rel.GE, self.cls_name) self.filter_sigma = validator.check_float_positive('filter_sigma', filter_sigma, self.cls_name) validator.check_value_type('k1', k1, [float], self.cls_name) self.k1 = validator.check_number_range('k1', k1, 0.0, 1.0, Rel.INC_NEITHER, self.cls_name) validator.check_value_type('k2', k2, [float], self.cls_name) self.k2 = validator.check_number_range('k2', k2, 0.0, 1.0, Rel.INC_NEITHER, self.cls_name) self.mean = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=filter_size) def construct(self, img1, img2): _check_input_4d(F.shape(img1), "img1", self.cls_name) _check_input_4d(F.shape(img2), "img2", self.cls_name) P.SameTypeShape()(img1, img2) max_val = _convert_img_dtype_to_float32(self.max_val, self.max_val) img1 = _convert_img_dtype_to_float32(img1, self.max_val) img2 = _convert_img_dtype_to_float32(img2, self.max_val) kernel = self._fspecial_gauss(self.filter_size, self.filter_sigma) kernel = P.Tile()(kernel, (1, P.Shape()(img1)[1], 1, 1)) mean_ssim = self._calculate_mean_ssim(img1, img2, kernel, max_val, self.k1, self.k2) return mean_ssim def _calculate_mean_ssim(self, x, y, kernel, max_val, k1, k2): """calculate mean ssim""" c1 = (k1 * max_val) * (k1 * max_val) c2 = (k2 * max_val) * (k2 * max_val) # SSIM luminance formula # (2 * mean_{x} * mean_{y} + c1) / (mean_{x}**2 + mean_{y}**2 + c1) mean_x = self.mean(x, kernel) mean_y = self.mean(y, kernel) square_sum = F.square(mean_x)+F.square(mean_y) luminance = (2*mean_x*mean_y+c1)/(square_sum+c1) # SSIM contrast*structure formula (when c3 = c2/2) # (2 * conv_{xy} + c2) / (conv_{xx} + conv_{yy} + c2), equals to # (2 * (mean_{xy} - mean_{x}*mean_{y}) + c2) / (mean_{xx}-mean_{x}**2 + mean_{yy}-mean_{y}**2 + c2) mean_xy = self.mean(x*y, kernel) mean_square_add = self.mean(F.square(x)+F.square(y), kernel) cs = (2*(mean_xy-mean_x*mean_y)+c2)/(mean_square_add-square_sum+c2) # SSIM formula # luminance * cs ssim = luminance*cs mean_ssim = P.ReduceMean()(ssim, (-3, -2, -1)) return mean_ssim def _fspecial_gauss(self, filter_size, filter_sigma): """get gauss kernel""" filter_size, g = _gauss_kernel_helper(filter_size) square_sigma_scale = -0.5/(filter_sigma * filter_sigma) g = g*square_sigma_scale g = F.reshape(g, (1, -1))+F.reshape(g, (-1, 1)) g = F.reshape(g, (1, -1)) g = P.Softmax()(g) ret = F.reshape(g, (1, 1, filter_size, filter_size)) return ret
[docs]class PSNR(Cell): r""" Returns Peak Signal-to-Noise Ratio of two image batches. It produces a PSNR value for each image in batch. Assume inputs are :math:`I` and :math:`K`, both with shape :math:`h*w`. :math:`MAX` represents the dynamic range of pixel values. .. math:: MSE&=\frac{1}{hw}\sum\limits_{i=0}^{h-1}\sum\limits_{j=0}^{w-1}[I(i,j)-K(i,j)]^2\\ PSNR&=10*log_{10}(\frac{MAX^2}{MSE}) Args: max_val (Union[int, float]): The dynamic range of the pixel values (255 for 8-bit grayscale images). Default: 1.0. Inputs: - **img1** (Tensor) - The first image batch with format 'NCHW'. It should be the same shape and dtype as img2. - **img2** (Tensor) - The second image batch with format 'NCHW'. It should be the same shape and dtype as img1. Outputs: Tensor, with dtype mindspore.float32. It is a 1-D tensor with shape N, where N is the batch num of img1. Examples: >>> net = nn.PSNR() >>> img1 = Tensor(np.random.random((1,3,16,16))) >>> img2 = Tensor(np.random.random((1,3,16,16))) >>> psnr = net(img1, img2) """ def __init__(self, max_val=1.0): super(PSNR, self).__init__() validator.check_value_type('max_val', max_val, [int, float], self.cls_name) validator.check_number('max_val', max_val, 0.0, Rel.GT, self.cls_name) self.max_val = max_val def construct(self, img1, img2): _check_input_4d(F.shape(img1), "img1", self.cls_name) _check_input_4d(F.shape(img2), "img2", self.cls_name) P.SameTypeShape()(img1, img2) max_val = _convert_img_dtype_to_float32(self.max_val, self.max_val) img1 = _convert_img_dtype_to_float32(img1, self.max_val) img2 = _convert_img_dtype_to_float32(img2, self.max_val) mse = P.ReduceMean()(F.square(img1 - img2), (-3, -2, -1)) # 10*log_10(max_val^2/MSE) psnr = 10 * P.Log()(F.square(max_val) / mse) / F.scalar_log(10.0) return psnr