# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Callback related classes and functions."""
import os
import stat
import shutil
import time
import numpy as np
import mindspore.context as context
from mindspore.train.serialization import _exec_save_checkpoint, _fill_param_into_net, _save_graph
from mindspore.train._utils import _make_directory
from mindspore import log as logger
from mindspore._checkparam import check_int_non_negative
from mindspore.common.tensor import Tensor
from .summary.summary_record import _cache_summary_tensor_data
__all__ = ["Callback", "LossMonitor", "TimeMonitor", "ModelCheckpoint", "SummaryStep", "CheckpointConfig", "RunContext"]
_cur_dir = os.getcwd()
_cur_net = None
_save_dir = _cur_dir
class _CheckpointManager:
"""Manage checkpoint files according to train_config of checkpoint."""
def __init__(self):
self._ckpoint_filelist = []
@property
def ckpoint_filelist(self):
"""Get all the related checkpoint files managed here."""
return self._ckpoint_filelist
@property
def ckpoint_num(self):
"""Get the number of the related checkpoint files managed here."""
return len(self._ckpoint_filelist)
def update_ckpoint_filelist(self, directory, prefix):
"""Update the checkpoint file list."""
self._ckpoint_filelist = []
files = os.listdir(directory)
for filename in files:
if os.path.splitext(filename)[-1] == ".ckpt" and filename.startswith(prefix):
mid_name = filename[len(prefix):-5]
flag = True
for char in mid_name:
if char.isalpha():
flag = False
if flag:
self._ckpoint_filelist.append(directory + '/' + filename)
def remove_ckpoint_file(self, file_name):
"""Remove the specified checkpoint file from this checkpoint manager and also from the directory."""
try:
os.chmod(file_name, stat.S_IWRITE)
os.remove(file_name)
self._ckpoint_filelist.remove(file_name)
except OSError:
logger.warning("OSError, failed to remove the older ckpt file %s.", file_name)
except ValueError:
logger.warning("ValueError, failed to remove the older ckpt file %s.", file_name)
def remove_oldest_ckpoint_file(self):
"""Remove the oldest checkpoint file from this checkpoint manager and also from the directory."""
ckpoint_files = sorted(self._ckpoint_filelist, key=os.path.getmtime)
self.remove_ckpoint_file(ckpoint_files[0])
def keep_one_ckpoint_per_minutes(self, minutes, cur_time):
"""Only keep the latest one ckpt file per minutes, remove other files generated in [last_time, cur_time]."""
movs = []
oldest_file = ''
oldest_time = cur_time
for ck_file in self._ckpoint_filelist:
modify_time = os.path.getmtime(ck_file)
if cur_time - modify_time < 60 * minutes:
movs.append(ck_file)
if modify_time < oldest_time:
oldest_time = modify_time
oldest_file = ck_file
for mv_file in movs:
if mv_file == oldest_file:
continue
self.remove_ckpoint_file(mv_file)
def _check_file_name_prefix(file_name_prefix):
"""
Check file name valid or not.
File name can't include '/'. This file name naming convention only apply to Linux.
"""
if not isinstance(file_name_prefix, str) or file_name_prefix.find('/') >= 0:
return False
return True
def _chg_ckpt_file_name_if_same_exist(directory, prefix):
"""Check if there is a file with the same name."""
files = os.listdir(directory)
suffix_num = 0
pre_len = len(prefix)
for filename in files:
name_ext = os.path.splitext(filename)
if name_ext[-1] != ".ckpt":
continue
# find same prefix file
if filename.find(prefix) == 0 and not filename[pre_len].isalpha():
# add the max suffix + 1
index = filename[pre_len:].find("-")
if index == 0:
suffix_num = max(suffix_num, 1)
elif index != -1:
num = filename[pre_len+1:pre_len+index]
if num.isdigit():
suffix_num = max(suffix_num, int(num)+1)
if suffix_num != 0:
prefix = prefix + "_" + str(suffix_num)
return prefix
[docs]class CheckpointConfig:
"""
The config for model checkpoint.
Args:
save_checkpoint_steps (int): Steps to save checkpoint. Default: 1.
save_checkpoint_seconds (int): Seconds to save checkpoint. Default: 0.
Can't be used with save_checkpoint_steps at the same time.
keep_checkpoint_max (int): Maximum step to save checkpoint. Default: 5.
keep_checkpoint_per_n_minutes (int): Keep one checkpoint every n minutes. Default: 0.
Can't be used with keep_checkpoint_max at the same time.
Raises:
ValueError: If the input_param is None or 0.
Examples:
>>> config = CheckpointConfig()
>>> ckpoint_cb = ModelCheckpoint(prefix="ck_prefix", directory='./', config=config)
>>> model.train(10, dataset, callbacks=ckpoint_cb)
"""
def __init__(self,
save_checkpoint_steps=1,
save_checkpoint_seconds=0,
keep_checkpoint_max=5,
keep_checkpoint_per_n_minutes=0):
if not save_checkpoint_steps and not save_checkpoint_seconds and \
not keep_checkpoint_max and not keep_checkpoint_per_n_minutes:
raise ValueError("The input_param can't be all None or 0")
if save_checkpoint_steps:
save_checkpoint_steps = check_int_non_negative(save_checkpoint_steps)
if save_checkpoint_seconds:
save_checkpoint_seconds = check_int_non_negative(save_checkpoint_seconds)
if keep_checkpoint_max:
keep_checkpoint_max = check_int_non_negative(keep_checkpoint_max)
if keep_checkpoint_per_n_minutes:
keep_checkpoint_per_n_minutes = check_int_non_negative(keep_checkpoint_per_n_minutes)
self._save_checkpoint_steps = save_checkpoint_steps
self._save_checkpoint_seconds = save_checkpoint_seconds
if self._save_checkpoint_steps and self._save_checkpoint_steps > 0:
self._save_checkpoint_seconds = None
self._keep_checkpoint_max = keep_checkpoint_max
self._keep_checkpoint_per_n_minutes = keep_checkpoint_per_n_minutes
if self._keep_checkpoint_max and self._keep_checkpoint_max > 0:
self._keep_checkpoint_per_n_minutes = None
else:
if not self._keep_checkpoint_per_n_minutes or self._keep_checkpoint_per_n_minutes == 0:
self._keep_checkpoint_max = 1
@property
def save_checkpoint_steps(self):
"""Get the value of _save_checkpoint_steps."""
return self._save_checkpoint_steps
@property
def save_checkpoint_seconds(self):
"""Get the value of _save_checkpoint_seconds."""
return self._save_checkpoint_seconds
@property
def keep_checkpoint_max(self):
"""Get the value of _keep_checkpoint_max."""
return self._keep_checkpoint_max
@property
def keep_checkpoint_per_n_minutes(self):
"""Get the value of _keep_checkpoint_per_n_minutes."""
return self._keep_checkpoint_per_n_minutes
[docs] def get_checkpoint_policy(self):
"""Get the policy of checkpoint."""
checkpoint_policy = {'save_checkpoint_steps': self._save_checkpoint_steps,
'save_checkpoint_seconds': self._save_checkpoint_seconds,
'keep_checkpoint_max': self._keep_checkpoint_max,
'keep_checkpoint_per_n_minutes': self._keep_checkpoint_per_n_minutes}
return checkpoint_policy
def _set_cur_net(net):
"""
Set current net for which we are using to save checkpoint.
Args:
net (Cell): train network
"""
global _cur_net
_cur_net = net
def _checkpoint_cb_for_save_op(parameter_list):
"""
The checkpoint callback function for MindSpore.
Will be executed by checkpoint save op.
Args:
parameter_list (list): Format is like [{"name",name},{"data",value}] and value type is Tensor.
Returns:
bool, true: means save checkpoint success.
"""
if _cur_net is None:
logger.warning("_cur_net is None. parameters are not updated.")
return False
logger.info("update parameters in the net.")
_fill_param_into_net(_cur_net, parameter_list)
_set_cur_net(None)
return True
def _summary_cb_for_save_op(summary_list):
"""
The summary callback function for MindSpore.
Will be executed by summary op.
Args:
summary_list (list): Format is like [{"name": tag_name, "data": tensor},...] and value is Scalar/Tensor.
Returns:
bool, true: means save summary success.
"""
ret = _cache_summary_tensor_data(summary_list)
return ret
def _build_callbacks(callbacks):
"""
Contain a list of callback.
Args:
callbacks (list): Callback functions list, Support None, a single Callback object, or a list.
Returns:
List, a list of callback functions.
"""
if callbacks:
if isinstance(callbacks, tuple):
raise TypeError("Callbacks cannot be a tuple. Please check it.")
if not isinstance(callbacks, list):
callbacks = [callbacks]
else:
callbacks = []
excute_callbacks = []
for cb in callbacks:
if cb is None or not isinstance(cb, Callback):
raise TypeError("Callback must inheriting base class Callback. Some callback is Wrong. Please check it.")
excute_callbacks.append(cb)
return _ListCallback(excute_callbacks)
class _ListCallback:
"""
Sequential execution of callback functions.
Execute Callback functions at certain points.
Args:
callbacks (list): Callback functions list.
"""
def __init__(self, callbacks):
super(_ListCallback, self).__init__()
self._callbacks = callbacks
def begin(self, run_context):
"""Called once before network training."""
for cb in self._callbacks:
cb.begin(run_context)
def epoch_begin(self, run_context):
"""Called before each epoch begin."""
for cb in self._callbacks:
cb.epoch_begin(run_context)
def epoch_end(self, run_context):
"""Called after each epoch finished."""
for cb in self._callbacks:
cb.epoch_end(run_context)
def step_begin(self, run_context):
"""Called before each epoch begin."""
for cb in self._callbacks:
cb.step_begin(run_context)
def step_end(self, run_context):
"""Called after each step finished."""
for cb in self._callbacks:
cb.step_end(run_context)
def end(self, run_context):
"""Called once after network training."""
for cb in self._callbacks:
cb.end(run_context)
[docs]class Callback:
"""
Abstract base class used to build a callback function.
Callback function will execution some operating to the current step or epoch.
Examples:
>>> class Print_info(Callback):
>>> def step_end(self, run_context):
>>> cb_params = run_context.original_args()
>>> print(cb_params.cur_epoch_num)
>>> print(cb_params.cur_step_num)
>>>
>>> print_cb = Print_info()
>>> model.train(epoch, dataset, callback=print_cb)
"""
def __init__(self):
pass
[docs] def begin(self, run_context):
"""
Called once before the network executing.
Args:
run_context (RunContext): Include some information of the model.
"""
[docs] def epoch_begin(self, run_context):
"""
Called before each epoch beginning.
Args:
run_context (RunContext): Include some information of the model.
"""
[docs] def epoch_end(self, run_context):
"""
Called after each epoch finished.
Args:
run_context (RunContext): Include some information of the model.
"""
[docs] def step_begin(self, run_context):
"""
Called before each epoch beginning.
Args:
run_context (RunContext): Include some information of the model.
"""
[docs] def step_end(self, run_context):
"""
Called after each step finished.
Args:
run_context (RunContext): Include some information of the model.
"""
[docs] def end(self, run_context):
"""
Called once after network training.
Args:
run_context (RunContext): Include some information of the model.
"""
[docs]class SummaryStep(Callback):
"""
The summary callback class.
Args:
summary (Object): Summary recode object.
flush_step (int): Number of interval steps to execute. Default: 10.
"""
def __init__(self, summary, flush_step=10):
super(SummaryStep, self).__init__()
if not isinstance(flush_step, int) or isinstance(flush_step, bool) or flush_step <= 0:
raise ValueError("`flush_step` should be int and greater than 0")
self._summary = summary
self._flush_step = flush_step
[docs] def step_end(self, run_context):
"""
Save summary.
Args:
run_context (RunContext): Context of the train running.
"""
cb_params = run_context.original_args()
if cb_params.cur_step_num % self._flush_step == 0:
self._summary.record(cb_params.cur_step_num, cb_params.train_network)
@property
def summary_file_name(self):
return self._summary.full_file_name
class _InternalCallbackParam(dict):
"""Internal callback object's parameters."""
def __getattr__(self, key):
return self[key]
def __setattr__(self, key, value):
self[key] = value
[docs]class RunContext:
"""
Provides information about the model.
Run call being made. Provides information about original request to model function.
callback objects can stop the loop by calling request_stop() of run_context.
Args:
original_args (dict): Holding the related information of model etc.
"""
def __init__(self, original_args):
if not isinstance(original_args, dict):
raise TypeError("The arg of RunContext should be dict type.")
self._original_args = original_args
self._stop_requested = False
[docs] def original_args(self):
"""
Get the _original_args object.
Returns:
_InternalCallbackParam, a object holding the original arguments of model.
"""
return self._original_args
[docs] def request_stop(self):
"""
Sets stop requested during training.
Callbacks can use this function to request stop of iterations.
model.train() checks whether this is called or not.
"""
self._stop_requested = True
[docs] def get_stop_requested(self):
"""
Returns whether a stop is requested or not.
Returns:
bool, if true, model.train() stops iterations.
"""
return self._stop_requested
[docs]class ModelCheckpoint(Callback):
"""
The checkpoint callback class.
It is called to combine with train process and save the model and network parameters after traning.
Args:
prefix (str): Checkpoint files names prefix. Default: "CKP".
directory (str): Lolder path into which checkpoint files will be saved. Default: None.
config (CheckpointConfig): Checkpoint strategy config. Default: None.
Raises:
ValueError: If the prefix is invalid.
TypeError: If the config is not CheckpointConfig type.
"""
def __init__(self, prefix='CKP', directory=None, config=None):
super(ModelCheckpoint, self).__init__()
self._latest_ckpt_file_name = ""
self._init_time = time.time()
self._last_time = time.time()
self._last_time_for_keep = time.time()
self._last_triggered_step = 0
if _check_file_name_prefix(prefix):
self._prefix = prefix
else:
raise ValueError("Prefix {} for checkpoint file name invalid, "
"please check and correct it and then continue.".format(prefix))
if directory:
self._directory = _make_directory(directory)
else:
self._directory = _cur_dir
if config is None:
self._config = CheckpointConfig()
else:
if not isinstance(config, CheckpointConfig):
raise TypeError("config should be CheckpointConfig type.")
self._config = config
# get existing checkpoint files
self._manager = _CheckpointManager()
self._prefix = _chg_ckpt_file_name_if_same_exist(self._directory, self._prefix)
self._graph_saved = False
[docs] def step_end(self, run_context):
"""
Save the checkpoint at the end of step.
Args:
run_context (RunContext): Context of the train running.
"""
cb_params = run_context.original_args()
# save graph (only once)
if not self._graph_saved:
graph_file_name = os.path.join(self._directory, self._prefix + '-graph.meta')
_save_graph(cb_params.train_network, graph_file_name)
self._graph_saved = True
self._save_ckpt(cb_params)
[docs] def end(self, run_context):
"""
Save the last checkpoint after training finished.
Args:
run_context (RunContext): Context of the train running.
"""
cb_params = run_context.original_args()
_to_save_last_ckpt = True
self._save_ckpt(cb_params, _to_save_last_ckpt)
from mindspore.parallel._cell_wrapper import destroy_allgather_cell
destroy_allgather_cell()
def _check_save_ckpt(self, cb_params, force_to_save):
"""Check whether save checkpoint files or not."""
if self._config.save_checkpoint_steps and self._config.save_checkpoint_steps > 0:
if cb_params.cur_step_num >= self._last_triggered_step + self._config.save_checkpoint_steps \
or force_to_save is True:
return True
elif self._config.save_checkpoint_seconds and self._config.save_checkpoint_seconds > 0:
self._cur_time = time.time()
if (self._cur_time - self._last_time) > self._config.save_checkpoint_seconds or force_to_save is True:
self._last_time = self._cur_time
return True
else:
if cb_params.cur_step_num == cb_params.step_num:
return True
return False
def _save_ckpt(self, cb_params, force_to_save=False):
"""Save checkpoint files."""
if cb_params.cur_step_num == self._last_triggered_step:
return
save_ckpt = self._check_save_ckpt(cb_params, force_to_save)
step_num_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
if save_ckpt:
cur_ckpoint_file = self._prefix + "-" + str(cb_params.cur_epoch_num) + "_" \
+ str(step_num_in_epoch) + ".ckpt"
# update checkpoint file list.
self._manager.update_ckpoint_filelist(self._directory, self._prefix)
# keep checkpoint files number equal max number.
if self._config.keep_checkpoint_max and 0 < self._config.keep_checkpoint_max <= self._manager.ckpoint_num:
self._manager.remove_oldest_ckpoint_file()
elif self._config.keep_checkpoint_per_n_minutes and self._config.keep_checkpoint_per_n_minutes > 0:
self._cur_time_for_keep = time.time()
if (self._cur_time_for_keep - self._last_time_for_keep) \
< self._config.keep_checkpoint_per_n_minutes * 60:
self._manager.keep_one_ckpoint_per_minutes(self._config.keep_checkpoint_per_n_minutes,
self._cur_time_for_keep)
# generate the new checkpoint file and rename it.
global _save_dir
_save_dir = self._directory
cur_file = os.path.join(self._directory, cur_ckpoint_file)
tmp_ckpt_file_name_for_cur_process = str(os.getpid()) + "-" + 'parameters.ckpt'
gen_file = os.path.join(_save_dir, tmp_ckpt_file_name_for_cur_process)
self._last_time_for_keep = time.time()
self._last_triggered_step = cb_params.cur_step_num
if context.get_context("enable_ge"):
_set_cur_net(cb_params.train_network)
cb_params.train_network.exec_checkpoint_graph()
_exec_save_checkpoint(cb_params.train_network, gen_file)
if os.path.exists(gen_file):
shutil.move(gen_file, cur_file)
self._latest_ckpt_file_name = cur_file
@property
def latest_ckpt_file_name(self):
"""Return the latest checkpoint path and file name."""
return self._latest_ckpt_file_name
[docs]class LossMonitor(Callback):
"""
Monitor the loss in training.
If the loss is NAN or INF, it will terminate training.
Note:
If per_print_times is 0 do not print loss.
Args:
per_print_times (int): Print loss every times. Default: 1.
Raises:
ValueError: If print_step is not int or less than zero.
"""
def __init__(self, per_print_times=1):
super(LossMonitor, self).__init__()
if not isinstance(per_print_times, int) or per_print_times < 0:
raise ValueError("print_step must be int and >= 0.")
self._per_print_times = per_print_times
def step_end(self, run_context):
cb_params = run_context.original_args()
loss = cb_params.net_outputs
if isinstance(loss, (tuple, list)):
if isinstance(loss[0], Tensor) and isinstance(loss[0].asnumpy(), np.ndarray):
loss = loss[0]
if isinstance(loss, Tensor) and isinstance(loss.asnumpy(), np.ndarray):
loss = np.mean(loss.asnumpy())
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1
if isinstance(loss, float) and (np.isnan(loss) or np.isinf(loss)):
raise ValueError("epoch: {} step: {}. Invalid loss, terminating training."
.format(cb_params.cur_epoch_num, cur_step_in_epoch))
if self._per_print_times != 0 and cb_params.cur_step_num % self._per_print_times == 0:
print("epoch: %s step: %s, loss is %s" % (cb_params.cur_epoch_num, cur_step_in_epoch, loss), flush=True)
class TimeMonitor(Callback):
def __init__(self, data_size):
super(TimeMonitor, self).__init__()
self.data_size = data_size
def epoch_begin(self, run_context):
self.epoch_time = time.time()
def epoch_end(self, run_context):
epoch_mseconds = (time.time() - self.epoch_time) * 1000
per_step_mseconds = epoch_mseconds / self.data_size
print("epoch time: {0}, per step time: {1}".format(epoch_mseconds, per_step_mseconds), flush=True)
def step_begin(self, run_context):
self.step_time = time.time()
def step_end(self, run_context):
step_mseconds = (time.time() - self.step_time) * 1000
print('step time', step_mseconds, flush=True)