Source code for mindspore.ops.operations.other_ops

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""Other operators."""
from ..._c_expression import signature_rw as sig_rw
from ..._c_expression import signature_kind as sig_kind
from ..._checkparam import ParamValidator as validator, Rel
from ...common import dtype as mstype
from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register


[docs]class Assign(PrimitiveWithInfer): """ Assign `Parameter` with a value. Inputs: - **variable** (Parameter) - The `Parameter`. - **value** (Tensor) - The value to assign. Outputs: Tensor, has the same type as original `variable`. Examples: >>> class Net(nn.Cell): >>> def __init__(self): >>> super(Net, self).__init__() >>> self.y = mindspore.Parameter(Tensor([1.0], mindspore.float32), name="y") >>> >>> def construct(self, x): >>> Assign()(self.y, x) >>> return x >>> x = Tensor([2.0], mindspore.float32) >>> net = Net() >>> net(x) """ __mindspore_signature__ = ( ('variable', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD), ('value', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD) ) @prim_attr_register def __init__(self): pass def infer_shape(self, variable, value): return variable def infer_dtype(self, variable, value): return variable
[docs]class BoundingBoxEncode(PrimitiveWithInfer): """ Encode bounding boxes locations. Args: means (tuple): Means for encoding bounding boxes calculation. Default: (0.0, 0.0, 0.0, 0.0). stds (tuple): Stds for encoding bounding boxes calculation. Default: (1.0, 1.0, 1.0, 1.0). Inputs: - **anchor_box** (Tensor) - Anchor boxes. - **groundtruth_box** (Tensor) - Ground truth boxes. Outputs: Tensor, encoded bounding boxes. Examples: >>> boundingbox_encode = BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)) >>> delta_box = boundingbox_encode(anchor_box, groundtruth_box) """ @prim_attr_register def __init__(self, means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)): validator.check_type('means', means, [tuple]) validator.check_type('stds', stds, [tuple]) validator.check("means len", len(means), '', 4) validator.check("stds len", len(stds), '', 4) def infer_shape(self, anchor_box, groundtruth_box): validator.check('anchor_box shape[0]', anchor_box[0], 'groundtruth_box shape[0]', groundtruth_box[0]) validator.check('anchor_box shape[1]', anchor_box[1], '', 4) validator.check('groundtruth_box shape[1]', groundtruth_box[1], '', 4) return anchor_box def infer_dtype(self, anchor_box, groundtruth_box): args = {"anchor_box": anchor_box, "groundtruth_box": groundtruth_box } validator.check_type_same(args, mstype.number_type) return anchor_box
[docs]class BoundingBoxDecode(PrimitiveWithInfer): """ Decode bounding boxes locations. Args: means (tuple): The means of deltas calculation. Default: (0.0, 0.0, 0.0, 0.0). stds (tuple): The standard deviations of deltas calculation. Default: (1.0, 1.0, 1.0, 1.0). max_shape (tuple): The max size limit for decoding box calculation. wh_ratio_clip (float): The limit of width and height ratio for decoding box calculation. Default: 0.016. Inputs: - **anchor_box** (Tensor) - Anchor boxes. - **deltas** (Tensor) - Delta of boxes. Outputs: Tensor, decoded boxes. Examples: >>> boundingbox_decode = BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280), wh_ratio_clip=0.016) >>> bbox = boundingbox_decode(anchor_box, deltas) """ @prim_attr_register def __init__(self, max_shape, means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), wh_ratio_clip=0.016): validator.check_type('means', means, [tuple]) validator.check_type('stds', stds, [tuple]) validator.check_type('wh_ratio_clip', wh_ratio_clip, [float]) validator.check("means", len(means), '', 4) validator.check("stds", len(stds), '', 4) if max_shape is not None: validator.check_type('max_shape', max_shape, [tuple]) validator.check("max_shape", len(max_shape), '', 2) def infer_shape(self, anchor_box, deltas): validator.check('anchor_box shape[0]', anchor_box[0], 'deltas shape[0]', deltas[0]) validator.check('anchor_box shape[1]', anchor_box[1], '', 4) validator.check('deltas shape[1]', deltas[1], '', 4) return anchor_box def infer_dtype(self, anchor_box, deltas): args = {"anchor_box": anchor_box, "deltas": deltas } validator.check_type_same(args, mstype.number_type) return anchor_box
[docs]class CheckValid(PrimitiveWithInfer): """ Check bounding box. Check whether the bounding box cross data and data border. Inputs: - **bboxes** (Tensor) - Bounding boxes tensor with shape (N, 4). - **img_metas** (Tensor) - Raw image size information, format (height, width, ratio). Outputs: Tensor, the valided tensor. """ @prim_attr_register def __init__(self): self.init_prim_io_names(inputs=['bboxes', 'img_metas'], outputs=['output']) def infer_shape(self, bboxes_shape, metas_shape): validator.check_shape_length("bboxes shape length", len(bboxes_shape), 2, Rel.EQ) validator.check("bboxes_shape[-1]", bboxes_shape[-1], "", 4, Rel.EQ) validator.check_shape_length("img_metas shape length", len(metas_shape), 1, Rel.EQ) validator.check("img_metas shape[0]", metas_shape[0], "", 3, Rel.EQ) return bboxes_shape[:-1] def infer_dtype(self, bboxes_type, metas_type): return mstype.bool_
[docs]class IOU(PrimitiveWithInfer): """ Calculate intersection over union for boxes. Calculate the specific value of overlap and union of the boxes. Args: mode (string): The mode is used to specify the calculation method, now support 'iou' (intersection over union) or 'iof' (intersection over foreground) mode. Default: 'iou'. Inputs: - **anchor_boxes** (Tensor) - Anchor boxes, tensor of shape (N, 4). - **gt_boxes** (Tensor) - Ground truth boxes, tensor of shape (M, 4). Outputs: Tensor, the 'iou' values, tensor of shape (M, N). Examples: >>> iou = IOU() >>> anchor_boxes = Tensor(np.random.randint(1,5, [10, 4])) >>> gt_boxes = Tensor(np.random.randint(1,5, [3, 4])) >>> iou(anchor_boxes, gt_boxes) """ @prim_attr_register def __init__(self, mode='iou'): self.init_prim_io_names(inputs=['anchor_boxes', 'gt_boxes'], outputs=['overlap']) def infer_shape(self, anchor_boxes, gt_boxes): validator.check('gt_boxes shape[1]', gt_boxes[1], '', 4) validator.check('anchor_boxes shape[1]', anchor_boxes[1], '', 4) iou = [gt_boxes[0], anchor_boxes[0]] return iou def infer_dtype(self, anchor_boxes, gt_boxes): args = {"anchor_boxes": anchor_boxes, "gt_boxes": gt_boxes} validator.check_type_same(args, (mstype.float16,)) return anchor_boxes
[docs]class MakeRefKey(Primitive): """ Make a RefKey instance by string. RefKey stores the name of Parameter, can be passed through the functions, and used for Assign target. Args: tag (str): Parameter name to make the RefKey. Inputs: No input. Outputs: RefKeyType, made from the Parameter name. Examples: >>> from mindspore.ops import functional as F >>> class Net(nn.Cell): >>> def __init__(self): >>> super(Net, self).__init__() >>> self.y = Parameter(Tensor(np.ones([6, 8, 10], np.int32)), name="y") >>> self.make_ref_key = MakeRefKey("y") >>> >>> def construct(self, x): >>> key = self.make_ref_key() >>> ref = F.make_ref(key, x, self.y) >>> return ref + x >>> >>> x = Tensor(np.ones([3, 4, 5], np.int32)) >>> net = Net() >>> net(x) """ @prim_attr_register def __init__(self, tag): validator.check_type('tag', tag, (str,))